最近,OpenAI 团队训练了 GPT-3(这是一个具有 1750 亿参数的自回归语言模型,参数量是之前任何非稀疏语言模型的 10 倍),并在少样本(few-shot)环境下对其性能进行了测试。在所有任务中,GPT-3 无需进行任何额外的梯度更新或微调,完全只通过模型与文本的交互,即可直接应用于特定任务与少样本 demo。GPT-3 ...
实验证明,1750亿参数的GPT-3模型,在少样本学习中取得了不错的效果。「GPT-3在特定领域少样本学习中取得了极大的性能提升,有些甚至超过了当前的SOTA效果」。对于所有任务,GPT-3没有进行任何微调,仅通过文本与模型进行交互。知乎用户李如总结了GPT-3相对BERT的优势,BERT在特定领域的任务微调过分依赖标注数据、容...
那个语言模型又迭代了,现在有1750亿个参数。这个让英伟达狂喜,让调参师流泪的数字来自OpenAI,史上最大AI语言模型——GPT-3。单单论文就有72页。OpenAI表示,通过GPT-3,他们证明了无需梯度更新,无需微调,规模更大的语言模型就可以大大改善无关任务和小样本(few-shot)学习的性能,达到最先进微调方法的水准。...
OpenAI最强预训练语言模型GPT-3周四发表在预印本 arXiv 上,1750亿参数! GPT系列的预训练语言模型一直是大力出奇迹的典型代表,但是一代和二代在偏重理解的自然语言处理任务中表现欠佳,逊色于BERT家族。 GPT(Generative Pre-Training)是一个12层单向Transformer语言模型。语言模型训练好后,可以用于其他的NLP任务。使用GPT...
【新智元导读】拥有1750亿参数的GPT-3取得了惊人的进步,但它并不是通用人工智能。GPT-3让我们看到了语言模型的能力,能否利用这种能力构建出一个模型,更好地理解周围的世界? 尽管有关 GPT-3的传说四起,但它本身并不是 AGI。 虽然在某些领域接近了人类能力(下棋或写作真的令人印象深刻) ,但它们好像做不出通用的...
1750 亿参数组成的训练模型 言归正传,OpenAI 的研究人员在上个月发表了一篇论文,描述了 GPT-3 的开发,正式发布了这个由 1750 亿个参数组成的 AI 语言模型。在 NLP 领域中,通常采用 ELMo 算法的思想,即通过在大量的语料上预训练语言模型,然后再将预训练好的模型迁移到具体的下游NLP任务,从而提高模型的能力...
那个语言模型又迭代了,现在有1750亿个参数。 这个让英伟达狂喜,让调参师流泪的数字来自OpenAI,史上最大AI语言模型—— GPT-3。 单单论文就有72页。 OpenAI表示,通过GPT-3,他们证明了无需梯度更新,无需微调,规模更大的语言模型就可以大大改善无关任务和小样本(few-shot)学习的性能,达到最先进微调方法的水准。
2020年,OpenAI放出了具有1750亿参数的预训练模型GPT-3,横扫文本生成领域,不仅能问答、翻译、写文章,还能做数学计算。唯一的「美中不足」就是没开源,代码和模型看着眼馋,却到不了嘴边。并且与微软签订了「独占协议」,公众只能通过付费API与模型进行交互,完整的研究访问授权仍然仅限于少数资源丰富的实验室。直到...
本文提出了首个可以在千亿参数模型上高效准确工作的一次性剪枝算法——SparseGPT。该方法将剪枝问题简化为极大规模的稀疏回归问题,并设计了一个新的近似稀疏回归求解器,也解决分层剪枝问题。 SparseGPT 可以在最大的开源 GPT 模型(1750 亿参数)上仅用单个 GPU 耗时几小时就完成剪枝。同时,在无需任何微调的情况下,...