https://github.com/THUDM/ChatGLM3 准备工作 GPU服务器,显存最少13G以上 FRP内网穿透(由于服务器并未开放其他端口,临时才有这种方式实现外网测试访问,如果官方提供外网端口可忽略)机器配置 型号:NVIDIA 4090 CPU:16 核 内存:100 G 显存:24 G 磁盘:100G - 800G 系统环境:ubuntu 22.04, nvidia_d...
默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:model = AutoModel.from_pretrained("THUDM/chatglm3-6b",trust_remote_code=True).quantize(4).cuda()模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit ...
LORA 微调: 1张显卡,占用 14082MiB 显存。 实机配置 目前我有三个方案: 方案1:MacBookProM1 16GB(平常用的机器,可以支撑起 LoRA…勉强跑 不推荐) 方案2:找算法组借的 2070 Super 8GB * 2 一共16GB显存(但是不能微调,后续说) 方案3:租的 3090 24GB * 1(完美,ChatGLM3-6B的微调任务都在该机器上完成...
默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型 以命令行对话为例,找到加载模型的代码(前文已提到不同demo下该代码的位置),修改其为 记得要将device_map="auto"去掉,quantize中参数4也可改为8,本人笔记本4060显卡在4-bit量化后能够流畅运...
默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下: 模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。如果一切正常,运行一下命令后可以再http://localhost:8501启动chatGLM3大模型...
默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下: model=AutoModel.from_pretrained("THUDM/chatglm3-6b",trust_remote_code=True).quantize(4).cuda() 模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit 量化...
默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下: model = AutoModel.from_pretrained("THUDM/chatglm3-6b",trust_remote_code=True).quantize(4).cuda() 模型量化会带来一定的性能损失,经过测试,ChatGLM3-6B 在 4-bit 量...
1. 选择 ChatGLM3-6B 镜像创建实例 提示 训练 ChatGLM3-6B 模型,显卡显存建议选择等于大于 16GB...
显存不足: 如果显存不够,可以尝试使用量化后的模型,如.quantize(4)或.quantize(8)。 版本不兼容: 如果遇到版本不兼容的问题,如AttributeError: 'ChatGLMTokenizer' object has no attribute 'sp_tokenizer',可以尝试安装指定版本的依赖项,如pip install cpm_kernels protobuf==4.24.4 "transformers<4.34"。 数据...
显存:24GB及以上(推荐使用30系或A10等sm80架构以上的NVIDIA显卡进行尝试) 内存:16GB RAM: 2.9 /16 GB GPU RAM: 15.5/16.0 GB 准备上面的两个数据集合,执行以下命令进行微调,对应的路径需要换成是自己环境的 ,需要有一定的时间等待,数据越多越久