2014年由Facebook提出的GBDT+LR模型, 该模型利用GBDT自动进行特征筛选和组合, 进而生成新的离散特征向量, 再把该特征向量当做LR模型的输入, 来产生最后的预测结果, 该模型能够综合利用用户、物品和上下文等多种不同的特征, 生成较为全面的推荐结果, 在CTR点击率预估场景下使用较为广泛。 二、逻辑回归模型 逻辑回归...
(1)lr算法简单,能够处理超高纬度稀疏问题。但是lr需要人工进行特征组合。gbdt+lr相当于对原始特征通过gbdt进行了特征组合 (2)gbdt对连续特征划分能力强,可以帮助lr处理连续特征,避免了人工对连续特征分箱操作。这里又涉及到另一个问题: 3 为什么lr不能处理连续特征(为什么要把连续特征转化为离散特征后送进lr?) 因为...
LR可以视作单层单节点的“DNN”, 是一种宽而不深的结构,所有的特征直接作用在最后的输出结果上。模型优点是简单、可控性好,但是效果的好坏直接取决于特征工程的程度,需要非常精细的连续型、离散型、时间型等特征处理及特征组合。通常通过正则化等方式控制过拟合。 问题思考:怎么使用时间,例如 20200923 这一类型特征?
而对于 GBDT,其更适合处理稠密特征,如 GBDT+LR 的Facebook论文中,对于连续型特征导入 GBDT 做特征组合来代替一部分手工特征工程,而对于 ID 类特征的做法往往是 one-hot 之后直接传入 LR,或者先 hash,再 one-hot 传入树中进行特征工程,而目前的主流做法是直接 one-hot + embedding 来将高维稀疏特征压缩为低纬...
GBDT+LR 由两部分组成,其中GBDT用来对训练集提取特征作为新的训练输入数据,LR作为新训练输入数据的分类器。 具体来讲,有以下几个步骤: 1、GBDT首先对原始训练数据做训练,得到一个二分类器,当然这里也需要利用网格搜索寻找最佳参数组合。 2、与通常做法不同的是,当GBDT训练好做预测的时候,输出的并不是最终的二分类...
在实际应用中,GBDT+LR模型也广泛应用于电商推荐、搜索排序等场景。例如,在电商平台上,通过GBDT+LR模型可以预测用户对商品的购买意愿,从而进行精准的个性化推荐。 优点与挑战 GBDT+LR模型的优势在于结合了GBDT的特征提取能力和LR的线性分类能力,实现了高效的分类预测。然而,该模型也存在一些挑战: 模型复杂度:GBDT+LR模...
本来想尝试写一下阿里的深度兴趣网络(Deep Interest Network),发现阿里之前还有一个算法MLR,然后去查找相关的资料,里面提及了树模型也就是GBDT+LR方案的缺点,恰好之前也不太清楚GBDT+LR到底是怎么做的,所以今天我们先来了解一下GBDT和LR的融合方案。 1、背景...
2, GBDT+LR优点: GBDT(Gradient Boost Decision Tree)是一种常用的非线性模型,它基于集成学习中的boosting思想,每次迭代都在减少残差的梯度方向新建立一颗决策树,迭代多少次就会生成多少颗决策树。 GBDT的思想使其具有天然优势可以发现多种有区分性的特征以及特征组合,决策树的路径可以直接作为LR输入特征使用,省去了人...
GBDT+LR GBDT+LR LR属于线性模型,容易并行化,可以轻松处理上亿条数据,但是学习能力十分有限,需要大量的特征工程来增加模型的学习能力。但大量的特征工程耗时耗力同时并不一定会带来效果提升。因此,如何自动发现有效的特征、特征组合,弥补人工经验不足,缩短LR特征实验周期,是亟需解决的问题。