《花书》作者Goodfellow 等人于2014年提出了GAN打开了绚丽多彩的博弈生成模型的大门,GAN的核心思想就是博弈论的相互对抗,纳什均衡:其思想主要构造两个深度神经网络:判别器D和生成器G,为GAN提供一些真实钞票作为训练样本,生成器G生成假的钞票来欺骗判别器D,给定一张钞票判别器D判断是否来自真币还是G生成的假币。判别器...
GANs是由Ian Goodfellow(《深度学习》(花书)的作者)及其同事于2014年提出的一种生成模型,它的出现对图像生成、风格迁移、数据增强等任务产生了深远的影响。 GANs(Generative Adversarial Networks,生成对抗网络)是从对抗训练中估计一个生成模型,其由两个基础神经网络组成,即生成器神经网络G(Generator Neural Network) 和...
原始的GAN产生的数据模糊不清,为了解决GAN太过自由这个问题,一个很自然的想法就是给GAN加一些约束,于是便有了这篇Conditional Generative Adversarial Nets,这篇工作的改进非常straightforward,在生成模型和判别模型分别为数据加上标签,也就是加上了限制条件。实验表明很有效。 DCGAN DCGAN全称为Deep convolutional generati...
一、GAN介绍 生成式对抗网络GAN(Generative Adversarial Networks)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。它源于2014年发表的论文:《Generative Adversarial Nets》,论文地址:https://arxiv.org/pdf/1406.2661.pdf。 模型通过框架中(至少)两个模块:生成模型(Generati...生成...
导语: 生成对抗网络(Generative Adversarial Network,简称GAN)是非监督式学习的一种方法,通过让两个神经网络相互博弈的方式进行学习。自2014年GAN网络提出以来,其在Computer Vision(计算机视觉)领域获得了广泛的关注,但GAN网络在其他领域的应用相对较少。将GAN网络的思想应用在图网络(network)特征表达是近一年新兴的课题,...
GAN最早是由Ian J. Goodfellow等人于2014年10月提出的,他的《Generative Adversarial Nets》可以说是这个领域的开山之作,论文一经发表,就引起了热议。而随着GAN在理论与模型上的高速发展,它在计算机视觉、自然语言处理、人机交互等领域有着越来越深入的应用,并不断向着其它领域继续延伸。
GAN相关(一):Generative Adversarial Nets 准备用GAN网络做一些事情,所以开始梳理一下GAN的相关内容。从最经典的一篇,也就是GAN的名称的来源,古德费洛大神的这篇文章开始。 Generative Adversarial Nets (2014,Ian J. Goodfellow et.al.) Abstract : generative model G ——> discriminative model D ...
生成对抗神经网络(Generative Adversarial Nets,GAN)是一种深度学习的框架,它是通过一个相互对抗的过程来完成模型训练的。典型的GAN包含两个部分,一个是生成模型(Generative Model,简称G),另一个是判别模型(Discriminative Model,简称D)。生成模型负责生成与样本分布一致的数据,目标是欺骗判别模型,让判别模型认为生成的数...
GAN(Generative Adversarial Networks)从其名字可以看出,是一种生成式的,对抗网络。再具体一点,就是通过对抗的方式,去学习数据分布的生成式模型。 所谓的对抗,指的是生成网络和判别网络的互相对抗。生成网络尽可能生成逼真样本,判别网络则尽可能去判别该样本是真实样本,还是生成的假样本。示意图如下: 隐变量 z (通常...
一、通俗的讲 一个比喻 一个例子 生成对抗网络(GAN,Generative Adversarial Network)二、认真点讲 1...