Flash Attention已经集成到了pytorch2.0中,可以很便捷的调用。 1.1 简介 FlashAttention旨在加速注意力计算并减少内存占用。FlashAttention利用底层硬件的内存层次知识,例如GPU的内存层次结构,来提高计算速度和减少内存访问开销。 FlashAttention的核心原理是通过将输入分块并在每个块上执行注意力操作,从而减少对高带宽内存(HBM...
1. 背景介绍 Flash Attention是Transformer性能提升的重要一步,后续Flash Attention 2和Flash Attention 3在这篇基础上进一步利用GPU的性能做了改进。基本原理参考下图,在具体的实现上大家可能会遇到各种问题,…
论文作者之一 、FlashAttention1-3 版本的参与者 Tri Dao 表示:FlashAttention 被广泛用于加速 Transformers,已经使注意力速度提高了 4-8 倍,但尚未利用现代 GPU。因而他们发布了 FlashAttention-3:在 FP16 上速度提高了 1.5-2 倍,在 H100 上高达 740 TFLOPS(75% 实用性),FP8 接近 1.2 PFLOPS!Hoppe...
通过这种方式,FlashAttention可以将内存开销降低到线性级别,并实现了2-4倍的加速,同时避免了对中间结果的频繁读写,从而提高了计算效率。 FlashAttention-2 经过铺垫,正式进入正文。我们先讲述FlashAttention-2对FlashAttention的改进,从而减少了非矩阵乘法运算(non-matmul)的FLOPs。然后说明如何将任务分配给不同的thread b...
“FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness”内存的效率与普通注意力相比(序列长度是二次的,O(N²)),FlashAttention是次二次的/线性的N (O(N))。并且它不是注意力机制的近似值(例如,稀疏或低秩矩阵近似值方法)-它的输出与“传统”注意力机制相同。与普通的注意力相比...
【新智元导读】FlashAttention新升级!斯坦福博士一人重写算法,第二代实现了最高9倍速提升。 继超快且省内存的注意力算法FlashAttention爆火后,升级版的2代来了。 FlashAttention-2是一种从头编写的算法,可以加快注意力并减少其内存占用,且没有任何近似值。
Flash Attention Flash Attention是注意力机制中的超级英雄,它能迅速找到关键信息,且内存利用效率高。虽然实现起来有些复杂,但它依赖底层硬件优化,使得计算速度飞快。这种机制旨在解决传统注意力机制在处理长序列时的性能瓶颈。 嵌入维度的选择 选择嵌入维度就像给模型挑选一副合适的眼镜。它决定了模型能看到多细致的语义信...
优化的工作划分:在FlashAttention-2中,研究人员提出了更精细的工作划分方法,将注意力计算任务在不同的warp(GPU中的线程束)之间进行合理分配。这种优化减少了warp之间的通信开销,提高了计算效率。 减少共享内存使用:FlashAttention-2通过改进数据布局和计算流程,显著减少了共享内存的使用量。这不仅降低了内存访问的延迟,还...
FlashAttention产生了第一个在挑战性的Path-X任务上(序列长度16K)实现优于随机性能的Transformer,块稀疏的FlashAttention则是第一个在Path-256(序列长度64K)上实现优于随机性能的序列模型。 3.Benchmarking Attention: 作者测量了FlashAttention和块稀疏的FlashAttention在不同序列长度下的运行时和内存性能,证实FlashAttenti...
FlashAttention 是什么?FlashAttention 是一种重新排序注意力计算的算法,它利用平铺、重计算等经典技术来显著提升计算速度,并将序列长度中的内存使用实现从二次到线性减少。其中平铺意味着将输入块从 HBM(GPU 内存)加载到 SRAM(快速缓存),并对该块执行注意力操作,更新 HBM 中的输出。此外通过不将大型中间注意...