其它部分基本和Fast R-CNN一致,所以我们可以将Faster R-CNN的网络看成两部分,一部分是RPN获取候选框网络结构,另一部分是Fast R-CNN网络结构,如下图所示: 倘若你是第一次看Faster R-CNN,看了这个图,我觉得你还是处于一个比较懵逼的状态。但是没有关系,这个图是论文中所给的,我贴在这里的主要目的是想让...
Region-based Convolutional Neural Network(R-CNN)是Faster R-CNN 最后的一步. 从图中得到特征图后, 使用它通过RPN得到物体候选(object proposal), 并通过 RoI Pooling 提取每个 proposal的特征, 并将这些特征用来做最后的分类. R-CNN有两个目标: 将proposals分类为某一类别. 调整proposal的位置 在原始 Faster R...
从如图1可以看出,faster r-cnn又包含了以下4重要的部分: 1. Conv layers 这里应该理解为基本卷积网络(base net).通过该网络来提取原始图片的featuremap特征,最后将这些特征送入RPN网络和RCNN网络。有一点需要注意的就是,真正送入RPN网络的featuremap其实并不是整张图片的产生的featuremap,具体怎么选择,后面仔细说明。
3.1 以Loss的角度观察Faster R-CNN 3.2 以anchor的角度观察Faster R-CNN 4 Faster RCNN 缺陷 Faster RCNN 整数化过程 5 参考资料 0.1 Faster R-CNN整体流程图 0.2 RPN层流程图 1 开始之前的关键词 对于关键词,大可挑选自己不懂的地方看,并不需要全看所有的介绍。 1.1 分类与回归 分类是将检测出现的正样本...
下面是根据源码绘制的Faster RCNN的数据流程图 训练过程 输入图像img首先被resize为 ResNet50网络如下图所示,在Faster-RCNN中被分成两块 和 . img经过 特征提取后,得到基础特征 ,接着进行处理,得到 和 。 与anchors进行函数名为 计算,就可以得到Faster RCNN的ROI区域,即建议框proposal。在这一步可以有两种方法...
Faster R-CNN的网络示意如下图。 学习Faster R-CNN目标检测框架,对于目标检测任务的熟悉和进一步研究有着非常大的帮助,接下来将主要通过Faster R-CNN的训练和推理过程,学习它的网络结构等内容。 Faster R-CNN 网络结构 Dataset 在提及Faster R-CNN框架前,首先还是要简单说明一下目标检测数据集。以Pascal VOC数据集...
图2展示了python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成foreground anchors与bounding box regression偏移量,...
Faster RCNN 是继R-CNN和Fast RCNN之后提出的新的目标检测网络,在检测精度和速度上有明显提高,在我...
同时利用Multi-task Loss(多任务损失函数)将边框回归和分类一起进行如下图所示。 3.1 步骤 Fast-RCNN流程图 好了我们总结下Fast RCNN的步骤吧 Fast RCNN 步骤 1. 特征提取:以整张图片为输入利用CNN得到图片的特征层; 2. region proposal:通过Selective Search等方法从原始图片提取区域候选框,并把这些候选框一一...
2、最后的分类与Bounding Box回归依然沿用Fast RCNN的检测模块,即RoI Pooling和多任务损失函数。 1 算法具体步骤 图1 Faster RCNN模型结构图 图2 Faster RCNN训练流程图 1、首先,原始图像输入卷积神经网络中,得到最后一层卷积层的特征作为后续网络层的输入,该特征分为2路,被后续的RPN层和RoI Pooling层所共享(其...