图像分类:从图像中给定数量的对象类中评估对象的存在,如指定一个或多个对象类标签到给定的图像,确定存在而不需要位置。代表网络:Alexnet、Resnet等等。 目标识别:是指识别/定位图像中所有目标的问题,包括目标检测和分类问题。代表网络:RCNN、FastRCNN、YOLO、SSD、EfficientDet。 语义分割:目的是将图像中的每个像素分...
现在的方法:完整的图片→CNN→得到每个候选方框的特征→分类+回归 很明显,Fast R-CNN比R-CNN在速度上有了大幅提升;与R-CNN对每个候选方框输入到CNN中提取特征不同的是,Fast R-CNN只对输入的整张图片提取一次特征,然后在第五个卷积层上提取每个候选方框的特征,此操作只需要计算一次特征,剩下的操作在第五个卷积...
图像分类任务中,用于卷积层计算的时间比用于全连接层计算的时间多,而在目标检测任务中,selective search算法提取的建议框比较多【约2k个】,几乎有一半的前向计算时间被花费于全连接层,就Fast R-CNN而言,RoI池化层后的全连接层需要进行约2k次【每个建议框都要计算】,因此在Fast R-CNN中可以采用SVD分解加速全连接层...
细心的同学可能看出来了问题,R-CNN虽然不再像传统方法那样穷举,但R-CNN流程的第一步中对原始图片通过Selective Search提取的候选框region proposal多达2000个左右,而这2000个候选框每个框都需要进行CNN提特征+SVM分类,计算量很大,导致R-CNN检测速度很慢,一张图都需要47s。 有没有方法提速呢?答案是有的,这2000个r...
基于深度学习的目标检测算法主要分为两个流派:(1)以R-CNN系列为代表的Two-Stage算法;(2)以SSD、YOLO为代表的One-Stage算法。具体来说,Two-Stage算法首先在图像上生成候选区域,然后对每一个候选区域依次进行分类与边界回归;而One-Stage算法则是直接在整张图像上完成所有目标的定位和分类,省去了生成候选区域这一步...
R-CNN的一张图像内候选框之间存在大量重叠,提取特征操作冗余。而Fast R-CNN将整张图像归一化后直接送入深度网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。 2、训练所需空间大 R-CNN中独立的分类器和回归器需要大量特征作为训练样本。Fast R-CNN把类别判断和位置精...
Faster R-CNN主要贡献是提出RPN网络,用于替代Selective Search或其他的图像处理分割算法,实现端到端的训练(end-to-end)。 1.卷积层后插入RPN RPN经过训练后直接产生Region Proposal,无需单独产生Region Proposal。 2. RPN后接ROI Pooling和分类层、回归层,同Fast R-CNN。
•加在最后一个全连接层后面(如R-CNN) regression太难做了,应想方设法转换为classification问题。 regression的训练参数收敛的时间要长得多,所以上面的网络采取了用classification的网络来计算出网络共同部分的连接权值。 思路二:取图像窗口 •还是刚才的classification + regression思路 ...
1.3 FASTER -RCNN: (1)输入测试图像; (2)将整张图片输入CNN,进行特征提取; (3)用RPN先生成一堆Anchor box,对其进行裁剪过滤后通过softmax判断anchors属于前景(foreground)或者后景(background),即是物体or不是物体,所以这是一个二分类;同时,另一分支bounding box regression修正anchor box,形成较精确的proposal(...
2:训练需要额外的空间保存提取到的特征,用于训练SVM分类器和边框回归器。 Fast R-CNN architecture 训练阶段:(Fast R-CNN是使用Multi-task Loss端到端训练的) 将整个图像和一组候选框(Selective Search得到)作为输入,通过Deep ConNet对图像进行特征提取,得到输入图像的特征图; ...