1、执行流程 数据准备 train_net.py中combined_roidb函数会调用get_imdb得到datasets中factory.py生成的imdb 然后调用fast_rcnn下的train.py中get_training_roidb, 进而调用roi_data_layer下roidb.py中的prepare_roidb会为roidb添加image等信息。 数据输入 roi_data_layer下layer.py中的forword函数会调用minibatch.py...
其实最主要的就是在Fast R-CNN中我们依旧是和R-CNN一样采用SS算法来生成候选框,而在Faster R-CNN中我们采用的是一种称为RPN(Region Proposal Network)的网络结构来生成候选框。其它部分基本和Fast R-CNN一致,所以我们可以将Faster R-CNN的网络看成两部分,一部分是RPN获取候选框网络结构,另一部分是Fast R-CNN...
四、全连接模块-RCNN 上面流程得出来的是256个ROI,输入RCNN,最终输出的是分类结果和回归结果,即分类和偏移预测,21个类别,84个位置偏移(每个类别4个)。
(2)ProposalTargetCreator:负责在训练RoIHead/Fast R-CNN的时候,从RoIs选择一部分(比如128个)用以训练。同时给定训练目标, 返回(sample_RoI, gt_RoI_loc, gt_RoI_label) (3)ProposalCreator:在RPN中,从上万个anchor中,选择一定数目(2000或者300),调整大小和位置,生成RoIs,用以Fast R-CNN训练或者测试。 其中A...
之前提到过,Faster R-CNN 第一步要使用在图片分类任务 (例如,ImageNet) 上预训练好的卷积神经网络,使用该网络得到的中间层特征的输出。这对有深度学习背景的人来说很简单,但是理解如何使用和为什么这样做才是关键,同时,可视化中间层的特征输出也很重要。没有一致的意见表明哪个网络框架是最好的。原始的 Faster R...
具体步骤概括为如下[2]: 1、特征提取(convolutional layer)。Faster R-CNN首先使用一组基础的conv+relu+pooling层提取候选图像的特征图。该特征图被共享用于后续RPN(Region Proposal Network)层和全连接(fully connection)层。 2、区域候选网络(Region Proposal Network)。RPN网络用于生成区域候选图像块。该层通过softma...
1、下载Faster R-CNN源码 https://github.com/dBeker/Faster-RCNN-TensorFlow-Python3 2、安装扩展包 下载的源码中有一个 requirements.txt文件,列出了需要安装的扩展包名字。可以在cmd中直接运行以下代码: pip install -r requirements.txt 或者使用pip命令一个一个安装,所需要的扩展包有:cython、opencv-python、...
步骤一就这样先告一段落,知识点还是比较多的,大部分都是借鉴大神的博客,如果有理解不到位,或者写错了的请大家批评指正! 补充:非极大值抑制(NMS) RCNN会从一张图片中找出n个可能是物体的矩形框,然后为每个矩形框为做类别分类概率: 就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些...
Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。如图 faster-RCNN网络流程 其主要步骤为: 1、输入图像到卷积网络中,生成该图像的特征映射。 2、在特征映射上应用Region Proposal Network,返回object proposals和相应分数。
5.FasterRCNN训练步骤 - 5.1 训练RPN网络 - 5.2 通过训练好的RPN网络收集proposals - 5.3 训练Faster RCNN网络 1.Conv layers 如图2所示,采用的VGG16模型作为网络基础结构,Conv layers共有13个conv层,13个relu层,4个pooling层。这里,卷积操作有一个通用的公式,给出输入图像X×X,若kernel_size,padding,stride都...