在该目录下,有fast_rcnn,faster_rcnn_alt_opt,faster_rcnn_end_to_end三套模型结构,各自有所不同。 fast_rcnn即fast_rcnn方法,它下面只包含了train.prototxt,test.prototxt,solver.prototxt三个文件,它对rcnn的改进主要在于重用了卷积特征,没有region proposal框架。 faster_rcnn_alt_opt,faster_rcnn_end_t...
Faster-RCNN 是 RCNN 和 Fast-RCNN 的进化版,最大的创新是引入了区域生成网络 (RPN - Region Proposal Network),区域生成网络支持使用机器学习代替固定的算法找出图片中可能包含对象的区域,精度比固定的算法要高很多,而且速度也变快了。 从R-CNN到Fast R-CNN,再到本文的Faster R-CNN,目标检测的四个基本步骤(...
i:bbox_transform_inv, 根据2.vii得到的RCNN_bbox_pred 修正2.ii得到的rios. ii:clip_boxes, 将 pred_boxes剪切在图像范围内, 超出边界的都剪切回图像内, pred_boxes个数没有变。 iii:使用nms得到最终的rios和label. 代码细节 rpn网络 i: rpn整体结构 ii: rpn前置网络 iii: RPN_proposal 代码注释 propo...
如图1.1所示,Faster RCNN 的整体框架按照功能区分,大致分为4个模块,分别是特征提取网络backbone模块、RPN模块、RoI and RoI pooling模块和RCNN模块。 图1.1 Faster RCNN 整体框架 Backbone模块:主要负责接收输入数据,并进行数据预处理和特征提取得到输入图像对应的feature maps,并传递给下一层。这部分论文中用的VGG16...
目标检测算法-Faster-RCNN代码详解 Faster-RCNN是基于VGG-16的网络结构,Faster-RCNN的提出为了改进Fast-RCNN中存在的问题。Fasr-RCNN中存在了一个较大的问题,就是selective search候选框,Fastr-RCNN中引入了一个专门的生成候选框的区域的神经网络,也就是选择候选框的工作也交给神经网络来做了,这就引入了RPN...
目标检测算法-Faster-RCNN代码详解 Faster-RCNN是基于VGG-16的网络结构,Faster-RCNN的提出为了改进Fast-RCNN中存在的问题。Fasr-RCNN中存在了一个较大的问题,就是selective search候选框,Fastr-RCNN中引入了一个专门的生成候选框的区域的神经网络,也就是选择候选框的工作也交给神经网络来做了,这就引入了RPN...
Faster R-CNN源代码的熟悉几乎是所有从事目标检测的人员必须迈过的坎,由于目录结构比较复杂而且广泛为人所用,涉及的东西非常多,所以我们使用的时候维持该目录结构不变,下面首先对它的目录结构进行完整的分析。 目录下包括caffe-fast-rcnn,data,experiments,lib,models,tools几大模块。
从如图1可以看出,faster r-cnn又包含了以下4重要的部分: 1. Conv layers 这里应该理解为基本卷积网络(base net).通过该网络来提取原始图片的featuremap特征,最后将这些特征送入RPN网络和RCNN网络。有一点需要注意的就是,真正送入RPN网络的featuremap其实并不是整张图片的产生的featuremap,具体怎么选择,后面仔细说明...
可以看到第一个步骤是用ImageNet的模型M0来Finetuning RPN网络得到模型M1。以训练为例,这里的args参数都在脚本 experiments/scrips/faster_rcnn_alt_opt.sh中找到。主要关注train_rpn函数。 对于train_rpn函数,主要分一下几步: 1.在config参数的基础上改动参数,以适合当前任务,主要有 ...