2.1.训练过程是one-stage的(SPPNet、R-CNN的训练过程都是multi-stage pipeline的),使用了multi-task的loss,不需要额外占用硬盘空间。 3、做了什么 提出了一个目标检测算法,在training和testing的过程中都做了很多的创新,训练比RCNN快9倍,test比RCNN快213倍(这可能就是写论文的技巧吧,一定要找好对比的对象,如果...
SPPnet在ConvNet之后接上了SPP layer(空间金字塔池化层),用来把不同尺寸的候选区域特征图转换为特定大小的输出;而Fast RCNN在ConvNet之后接上了ROI pooling layer(ROI池化层),用于把不同尺寸的候选区域特征图转换成特定尺寸的特征图 SPPnet在提取到图像的CNN特征后,又额外训练SVM进行分类和回归;而Fast RCNN就是直...
接着,RoI池化层使得Fast R-CNN不需要像R-CNN在训练出测试时将所有推荐区域送入CNN中提取特征,而是利用CNN的尺度不变性,首先将原始图像送入CNN提取特征,然后将推荐区域尺寸及其位置信息、特征图及其尺寸与最终的固定的输出尺寸送入RoI池化层得到所有推荐区域对应的特征图,这样加快Fast R-CNN的训练和测试速度,减少大量...
Fast RCNN不仅大大提高了检测速度,也提高了检测准确率。其中,其是对整张图像卷积而不是对每个region proposal卷积。ROI Pooling,分类和回归都放在网络一起训练、multi-task loss是算法的三个核心。当然Fast RCNN的主要缺点在于region proposal的提取使用selective search,目标检测时间大多消耗在这上面(提region proposal ...
有的时候,好的成果并不一定全都是首创,Fast R-CNN就是一个很好的说明,SPPnet的池化思想在Fast上得到了简化与发扬,同时作者rbg在R-CNN的基础上进一步将检测框回归整合到了神经网络中来,使得Fast的训练测试速率得到非常大的提升。 论文原文: https://www.semanticscholar.org/paper/Fast-R-CNN-Girshick/3dd2f70f4...
首先,Fast R-CNN使用VGG16网络作为基础特征提取网络,这是得益于VGG16网络是当时ImageNet竞赛亚军,特征提取能力比较强大。 接着,RoI池化层使得Fast R-CNN不需要像R-CNN在训练出测试时将所有推荐区域送入CNN中提取特征,而是利用CNN的尺度不变性,首先将原始图像送入CNN提取特征,然后将推荐区域尺寸及其位置信息、特征图...
由于Faster R-CNN 是采用 VGG16 的中间卷积层的输出,因此,不用关心输入的尺寸. 而且,该模块仅利用了卷积层. 进一步去分析模块所使用的哪一层卷积层. Faster R-CNN 论文中没有指定所使用的卷积层,但在官方实现中是采用的卷积层 conv5/conv5_1 的输出. ...
1.1. R-CNN and SPPnet R-CNN(Region-based Convolutional Network)方法通过使用深度卷积网络去对目标位置proposals分类而获得了优秀的目标检测精确度,但是其也有着很明显的缺点: 训练是一个多阶段的管道。R-CNN一开始在目标proposals上使用对数损失函数去微调一个卷积网络。然后是SVM去适应卷积网络特征。这些SVMs将作为...
1、R-CNN网络训练、测试速度都很慢:R-CNN网络中,一张图经由selective search算法提取约2k个建议框【这2k个建议框大量重叠】,而所有建议框变形后都要输入AlexNet CNN网络提取特征【即约2k次特征提取】,会出现上述重叠区域多次重复提取特征,提取特征操作冗余; ...
文章《Fast R-CNN》,是在SPP-net的基础上对R-CNN的再次改造。 关于R-CNN的细节请查看R-CNN文章详细解读,关于SPP-net的细节请查看SPP-net文章详细解读 先来回顾一下R-CNN和SPP-net的缺点: 1.R-CNN的缺点 训练分为多个阶段。首先要使用search selective算法从输入图像提取约2000个候选区域,其次要训练CNN网络,...