- nlp知识点分享 知识 校园学习 多头注意力机制 decoder 简单易懂 机器翻译 transformer 大模型 nlp encoder 注意力机制大麦和小泥 发消息 双一流统计学本科,学习的同时如果能帮助到大家就太开心了,特别欢迎找我交流!保姆级电脑系统优化教程,变流畅原来这么简单!
现代机器翻译可以直接从人工神经网络的数据中学习它们的特征,这表明,机器翻译的端-端的学习算法不需要做什么调整就可以应用于语音解码。 为了验证这一假设,我们在语音生成过程中,根据ECoG获得的神经信号和对应的口语转录,训练了一种这样的“序列-序列”结构。这项任务与机器翻译之间最重要的区别在于机器翻译的数据集可以...
Encoder-Decoder 是NLP领域里的一种模型框架。它被广泛用于机器翻译、语音识别等任务。 本文将详细介绍 Encoder-Decoder、Seq2Seq 以及他们的升级方案Attention。 什么是 Encoder-Decoder ? Encoder-Decoder 模型主要是 NLP 领域里的概念。它并不特值某种具体的算法,而是一类算法的统称。Encoder-Decoder 算是一个通用的...
initial_state是Encoder过程输出的状态数据。output_layer是一个全连接层,Decoder中的LSTM隐藏层输出的结果通过这个全连接层转换成最终的翻译结果。 training_decoder=seq2seq.BasicDecoder(cell=self.decoder_cell,# 加入Attention的decoder cell helper=training_helper,# 获取数据的helper函数 initial_state=decoder_initial...
seq2seq顾名思义就是模型的输入和输出均是序列(sequence),机器翻译模型是seq2seq的一典型例子。 RNN-Encoder-Decoder模型 1、机器翻译模型 机器翻译模型 上图的机器翻译模型由左边的多对一RNN(many to one)和右边的一对多RNN(one to many)组成,左边绿色部分是编码器(encodeer),右边紫色部分是解码器(decodeer)。
Encoder-Decoder 框架是深度学习中非常常见的一个模型框架,例如在 Image Caption 的应用中 Encoder-Decoder 就是 CNN-RNN 的编码 - 解码框架;在神经网络机器翻译中 Encoder-Decoder 往往就是 LSTM-LSTM 的编码 - 解码框架,在机器翻译中也被叫做 Sequence to Sequence learning 。
Encoder-Decoder(编码-解码)是深度学习中非常常见的一个模型框架,比如无监督算法的auto-encoding就是用编码-解码的结构设计并训练的;比如这两年比较热的image caption的应用,就是CNN-RNN的编码-解码框架;再比如神经网络机器翻译NMT模型,往往就是LSTM-LSTM的编码-解码框架。因此,准确的说,Encoder-Decoder并不是一个具体...
Seq2Seq的产生是因为,机器翻译,语音识别图像描述生成等,长度事先不知道,无法固定长度,所以产生了这个框架。 Seq2Seq(强调目的),不特指方法,满足输入序列,输出序列的,都统称为Seq2Seq模型,具体方法都基本属于Encoder-Decoder模型(强调方法)的范围。 3.Attention ...
最初的Transformer是基于广泛应用在机器翻译领域的Encoder-Decoder架构: Encoder: 将由token 组成的输入序列转成由称为隐藏状态(hidden state)或者上下文(context)的embedding向量组成的序列。 Decoder: 根据Encoder 的隐藏状态迭代生成组成输出序列的 token。