I was trying to solveCSES Shortest Routes Iusing priority_queue. However, I faced TLE even though I was storing negative of distance in it. After a bit of reading onCP-Algo's Page, they said that The main difference to the implementation with set is that in many languages, including C++...
使用priority_queue实现Dijkstra 主要是记得传比较算子进去,优先队列要的那个算子参数大概是用来定义优先级的,默认是less,大概是优先级低的先出队。想要从小到大排序要传greater进去。 1priority_queue< edge,vector<edge>,greater<edge> >Q;2Q.push(make_pair(0,1));dis[1]=0;3while(!Q.empty()){4intu=...
priority_queue<ss>que;//定义优先队列,不懂看“C++之路启航——标准模板库(queue)” que.push(ss(s,0));//把起点压入队列中。 for (int i=0;i<=m;i++)// dis[i]=100000000; dis[s]=0;// 初始操作。 while (!que.empty()) { ss op=que.top();//取出最小值。op.x为点的编号,op.y...
使用优先队列(Priority Queue):通过使用优先队列来存储未访问顶点的集合,我们可以将算法的时间复杂度降...
{ return w>x.w;//这里注意符号要为'>' }};priority_queue<node>q;//优先队列,其实这里一般使用一个pair,但为了方便理解所以用的结构体inline void add(int u,int v,int w){ e[++cnt].u=u; //这句话对于此题不需要,但在缩点之类的问题还是有用的 e[cnt].v=v; e[cnt].w=w; e[cnt]....
[idx] = b; w[idx] = c; ne[idx] = h[a]; h[a] = idx++; } // 求出 1 号点到 n 号点的最短距离 int dijkstra() { // 初始化距离 memset(dist, 0x3f, sizeof(dist)); dist[1] = 0; // 用堆维护、查找距离最短的点 priority_queue<PII, vector<PII>, greater<PII>> heap; ...
void add(int a,int b,int c) { e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++; } typedef pair<int,int>PII; int dist[N]; int dijkstra(int st,int ed) { priority_queue<PII,vector<PII>,greater<PII>> pq; memset(dist,0x3f,sizeof(dist)); ...
#include<iostream>using namespace std;//图int graph[100][100];//节点数、边数int n,m;//无穷大constintINF=999;//初始化图,自己和自己的距离为0,和其它节点距离为 INFvoidinit(){for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){if(i==j)graph[i][j]=0;elsegraph[i][j]=INF;}...
priority_queue< Heap >q; //优先级队列 cur.x=start; cur.dis=0; x[start]=0; q.push(cur); while(!q.empty()) { cur = q.top(); q.pop(); if(cur.x == end) //找到终点 return cur.dis; if(visit[cur.x]) //访问过
using namespace std; //图节点结构体定义 struct Node { int distance; //到起始节点的距离 vector neighbors; //相邻节点 }; // Dijkstra算法实现 void dijkstra(Node* start, int target, vector& nodes) { priority_queue, vector>, greater>> pq; //小根堆 vector distances(nodes.size(), INT_MAX...