data_1=data.sort_index(ascending=False,ignore_index=True) 1. 其结果如下: 先将data按其索引的逆序排序重新进行排列,逆序排列后的索引顺序为:C2->B1->A2->A1,并抛弃原有的索引(因为设置了ignore_index参数)即可得到上述结果。 1.2 sort_values用法 同样,sort_values可以将DataFrame按指定值的大小顺序重新排列...
①df.sort_values(by='A', inplace=False,ascending=False) 会直接出排序结果,因为是排序结果会返回一个新的数据框,而原始数据框不会发生改变。 ②df.sort_values(by='B', inplace=True,ascending=False) 并不会直接出排序结果,需要打印输出一下df,才能看到排序结果。
示例是pandas.DataFrame,但是pandas.Series也具有sort_values()和sort_index(),因此用法是相同的。 按元素排序sort_values() 使用sort_values()方法根据元素值进行排序。 在第一个参数(by)中指定要排序的列的标签(列名)。 df_s = df.sort_values('state') print(df_s) # name age state point # 1 Bob ...
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') axis:{0 or ‘index’, 1 or ‘columns’}, default 0,默认按照列排序,即纵向排序;如果为1,则是横向排序。 by:str or list of str;如果axis=0,那么by="列名";如果axis=1,那么by="行名...
首先,我们来看一下sort_values的基本语法。它的函数原型如下: df.sort_values(by=None,ascending=True/False,ascending_order=None) 其中,by参数表示需要排序的列,ascending参数表示排序的方向(升序/降序),ascending_order参数表示排序的顺序,可以是 None(默认值,表示不进行排序)。
是Pandas库中的一个方法,用于对DataFrame对象中的数据进行排序。该方法可以接受一个或多个列名作为排序的依据,并且还可以选择按升序或降序进行排序。 常用的sort_values选项包括: ...
sort_values的参数(by = 列名,ascending=True/False) 升序:ascending=True(默认值),降序:ascending=False 若不设置接收对象名,则在原数据上进行排序 准备工作 # 导入importpandasaspd# 模拟数据df=pd.DataFrame({'姓名':['张三','李四','王五','赵六','孙七','周八','九九'],'性别':['男','男','...
对数据进行排序,用到了sort_values,by参数可以指定根据哪一列数据进行排序。ascending是设置升序和降序。 按第一关键字,第二关键字进行排序。 sort_values其它参数:axis=0或者1 纵向排序还是横向; na_position='last' 将空值排在最后。kind和inplace是排序的具体方式,一般数据用不到。
df=df.sort_values(by=['总分'],ascending=False) 表示按照“总分”从高到低排序。 df=df.sort_values(by=['总分','语文'],ascending=False) 表示按照“总分”从高到低排序,若“总分”相同,再按照“语文”成绩从高到低排序。 21.3 字段截取
简介:【5月更文挑战第2天】使用Python pandas的sort_values()方法可按一个或多个列对DataFrame排序。示例代码展示了如何按'Name'和'Age'列排序 DataFrame。先按'Name'排序,再按'Age'排序。sort_values()的by参数接受列名列表,ascending参数控制排序顺序(默认升序),inplace参数决定是否直接修改原DataFrame。