请教一下,X矩阵具有行稀疏特性,那么每行的二范数如下: 得到的稀疏解的表达式为: 我的代码如下,请教如何修改? cvx_begin quiet variable X(N,L) complex minimize ( sum_square_abs(Y-A*X) + miu*norm( norms(X,2,2) ,1) ) cvx_end回复此楼» 猜你喜欢...
sum_square_pos(x)/yfor\(x\in\mathbf{R}^n\),\(y>0\). Convex, increasing in\(x\), and decreasing in\(y\). †rel_entr(x) Scalar relative entropy;rel_entr(x,y)=x.*log(x/y). Convex. sigma_max maximum singular value of real or complex matrix. Same asnorm. Convex. ...
约束表达式:使用MATLAB的常规数学运算符(如+, -, .*, .^, >=, <=, ==)以及特定的凸运算符(如norm, quad_form, sum_square等)来构建约束条件。约束条件通常用subject to语句括起。例如: matlab A = randn(N,N); b = randn(N,1); constraint = [A*x <= b, sum(x) == 1, x...
This is the reason several functions in the CVX atom library come in two forms: the “natural” form, and one that is modified in such a way that it is monotonic, and can therefore be used in compositions. Other such “monotonic extensions” includesum_square_posandquad_pos_over_lin. If...
何必用它呢。有快速的闭式迭代!发自小木虫Android客户端
x.*xsquare(x)(实数x) conj(x).*xsquare_abs(x) y*ysum_square_abs(y) (A*x-b)*Q*(A*x-b)quad_form(A*x-b,Q) CVX将探测例如上述的⼆次表达式,并确定它们是否为凸或者是凹。如果是,将他们转化为例如右边命令的等效函数。 CVX测试每个仿射表达式的乘积和每个仿射表达式的⼆次型来检查它的凸...
sum_square_pos( x )/yforx\in\mathbf{R}^n,y>0. Convex, increasing inx, and decreasing iny. †rel_entr(x) Scalar relative entropy;rel_entr(x,y)=x.*log(x/y). Convex. sigma_max maximum singular value of real or complex matrix. Same asnorm. Convex. ...
minimize( k0*sum(pow_p(v_x(1:Nslot),1)) + (k1/2)*sum(pow_p(v_x(1:Nslot),2)) + beta*sum(square(F1)*square(v_x(Nslot+1:Nvars)))-k0*sum(pow_p(Load_basic0(1:Nslot),1)) - (k1/2)*sum(pow_p(Load_basic0(1:Nslot),2)) ) ...
minimize( k0*sum(pow_p(v_x(1:Nslot),1)) + (k1/2)*sum(pow_p(v_x(1:Nslot),2)) + beta*sum(square(F1)*square(v_x(Nslot+1:Nvars)))-k0*sum(pow_p(Load_basic0(1:Nslot),1)) - (k1/2)*sum(pow_p(Load_basic0(1:Nslot),2)) ) ...
sum_square_abs(vk) <= P(k); ((h{k,k}’*vk))) > 0; cvx_end I get the following error: ??? Error using ==> cvx.log at 64 Disciplined convex programming error: Illegal operation: log( {complex affine} ). Is there an equivalent formulation for the objective function?