简介: 【PyTorch】cuda()与to(device)的区别 问题 PyTorch中的Tensor要想在GPU中运行,可以有两种实现方式,其一是x.cuda(),其二是x.to(device)。两种方式均能实现GPU上运行,那么二者的区别是什么呢? 方法 import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' a = torch.randn([3, ...
推荐使用to(device)的方式,主要原因在于这样的编程方式更加易于扩展,而cuda()必须要求机器有GPU,否则需要修改所有代码,to(device)的方式则不受此限制,device既可以是CPU也可以是GPU;
GPU/CPU运行切换 在训练网路时,采用GPU进行加速,pytorch提供了一个功能,能够一条语句切换在CPU、GPU上运算,如果在GPU上运行,device = torch.device( ‘cuda:0’ ), (后面的0是cuda的编号),如果在CPU上运行,将‘cuda’改成‘GPU’即可。对net搬到GPU上去,使用net = MLP().to(device), 将loss也使用.to(d...
.to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")# 单GPU或者CPUmodel.to(device)#如果是多GPUif torch.cuda.device_count() > 1: model = nn.DataParallel(model,device_ids=[0,1,2]) model.to(device) AI代码助手复制代码 .cuda() 只能指...
一、.to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")#单GPU或者CPUmodel.to(device)#如果是多GPUiftorch.cuda.device_count() > 1: model= nn.DataParallel(model,device_ids=[0,1,2]) ...
pytorch中.to(device)和.cuda()的区别说明 原理 .to(device) 可以指定CPU 或者GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU model.to(device)#如果是多GPU if torch.cuda.device_count() > 1:model = nn.DataParallel(model,device_ids=[0,1,...
把数据从CPU迁移到GPU时,可以用.cuda()方法,也可以用.to(device)方法。示例如下。 .cuda()方法 import torch import time t = time.time() b = torch.rand([1024, 1024, 10]) b = b.cuda() p
(2).to(device)和.cuda()设置GPU的区别 代码复现时明显感觉一些基本概念都不清楚,特此记录。 参考:内存与显存、CPU与GPU、GPU与CUDA_cpu 逻辑运算 缓存 排队 显卡 内存 知乎-CSDN博客 1 内存与显存 (1) 内存 内存(Memory)也被称为内存储器,其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换...
没有区别。 早期(张量和模型都要): x = x.cuda() model.cuda() 后来: device = torch.device('cuda') if cuda_available else torch.device('cpu') x = x.to(device) model = model.to(devi...
1)cudaMemcpyHostToHost 2)cudaMemcpyHostToDevice 3)cudaMemcpyDeviceToHost 4)cudaMemcpyDeviceToDevice 这四个过程的方向可以清楚的从字面上看出来,这里就不废话了,如果函数执行成功,则会返回 cudaSuccess 否则返回 cudaErrorMemoryAllocation 使用下面这个指令可以吧上面的错误代码翻译成详细信息: ...