cross_attention函数:实现Cross-Attention机制。它接受查询(q)、键(k)和值(v)作为输入,以及一个可选的注意力掩码(mask)。它调用scaled_dot_product_attention函数来计算输出和注意力权重,并将其返回。 在实际应用中,Cross-Attention通常使用深度学习框架(如PyTorch或TensorFlow)的内置函数和类来实现,这些实现更加高效和...
Multi-heads Cross-Attention代码实现 cross-attention的计算过程基本与self-attention一致,不过在计算query,key,value时,使用到了两个隐藏层向量,其中一个计算query,另一个计算key和value。 frommathimportsqrtimporttorchimporttorch.nnasnnclassCalculateAttention(nn.Module):def__init__(self):super().__init__()...