cross entropyloss公式交叉熵损失函数(Cross Entropy Loss)公式为:L = - [y log y^ + (1 - y) log (1 - y^)]。 其中,y表示样本标签,y^表示模型预测值。交叉熵损失函数用于度量两个概率分布之间的距离,在机器学习中常用于分类问题。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | ...
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1])) # numpy version loss = np.mean(-np.sum(y_*np.log(y), axis=1)) # pytorch version entroy=nn.CrossEntropyLoss() output = entroy(input, target) 交叉熵能够衡量同一个随机变量中的两个不同概率分布的差异程...
cross_entropy(predicted1, truth)) 上面的输出结果为: tensor([[-0.9459, -1.0459, -1.3459]]) tensor(0.9459) tensor(0.9459) 可以看到truth中的值就是log_softmax结果后的数组的idx,即truth的0对应-0.9459的位置,将-0.9459取出后取负数便为NLLLoss的结果。同样地,若truth的值为1,那么第二行和第三行的...
y_true_binary=np.array([[0],[1],[1],[0]])y_pred_binary=np.array([[0.1],[0.9],[0.8],[0.4]])loss_binary=binary_cross_entropy_loss(y_true_binary,y_pred_binary)print("Binary Cross-Entropy Loss:",loss_binary)# 多分类 y_true_categorical=np.array([[1,0,0],[0,1,0],[0,0,...
\[Loss = -1/2(1*log0.7 + 1*log0.2)\]在此公式中,X表示样本等于特定类别的概率向量,Y为样本的标签,此例中Y为[1,0],计算交叉熵损失。对于多分类问题,交叉熵公式为:\[Loss = -1/2(log0.7+log0.5)\]在交叉熵定义中,M代表类别总数,i表示第i个样本,yic表示第i个样本类别c...
importtorchimportmath# 可以指定用平均值(mean)还是总和(sum),上面的公式仅列出总和loss=torch.nn.CrossEntropyLoss(reduction='mean')# nn.CrossEntropyLoss会对输入值做softmax(做exp),故这里为了方便说明,指定exp后的值input=torch.tensor([[math.log(0.4),math.log(0.4),math.log(0.2)]],requires_grad=Tr...
信息量计算公式为:[公式]。熵描述整个概率分布的平均信息量,公式为:[公式]。相对熵(KL散度)衡量两个概率分布的差异,公式为:[公式]。交叉熵简化了KL散度的使用,定义为:[公式]。交叉熵损失的计算方法基于单个样本,真实分布为[公式],网络输出分布为 [公式],总类别数为n。计算公式为:[公式]...
crossentropyloss=nn.CrossEntropyLoss()crossentropyloss_output=crossentropyloss(x_input,y_target)print('crossentropyloss_output:\n',crossentropyloss_output) 最后计算得到的结果为: 代码语言:javascript 复制 x_input:tensor([[2.8883,0.1760,1.0774],[1.1216,-0.0562,0.0660],[-1.3939,-0.0967,0.5853]])y_...
CrossEntropyLoss的计算公式为(本质上是交叉熵公式+softmax公式): BCEWithLogitsLoss和BCELoss的predict和target必须保持维度相同,即同时是一维张量,或者同时是二维张量,例如: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 m=nn.Sigmoid() loss=nn.BCELoss() ...
(1)计算公式 (2)代码实现 经过softmax计算概率值 经过log函数取对数,因为输入为(0,1),所以经过log后就会变成(-∞,0),取绝对值后,取值范围又变成了(0,+∞) 计算NLLLoss损失 importtorch.nnasnnimporttorch x = torch.randn((2,3,4)) y = torch.tensor([[0,1,3],[1,0,1]]) # 形状(2,3) ...