Let alpha=(pi)/(5) and A,=[[cos alpha,sin alpha-sin alpha,cos alpha]] then B=A^(4)-A^(3)+A^(2)-A is View Solution Ifα=π3, prove thatcosα⋅cos2α⋅cos3α⋅cos4α⋅cos5α⋅cos6α=−116. View Solution Evaluatecosαcos2αcos3α...cos999α, whereα=2π199...
解析:cosalpha;=-35,alpha;isin;(pi;2,pi;),所以sinalpha;=45,there4;tanalpha;=sinalpha;cosalpha;=-43.相关知识点: 试题来源: 解析 答案:-43 解析:cosalpha;=-35,alpha;isin;(pi;2,pi;),所以sinalpha;=45,there4;tanalpha;=sinalpha;cosalpha;=-43.反馈...
【题目】已知α为钝角,$$ \cos ( \alpha - \frac { \pi } { 4 } ) = \frac { \sqrt { 2 } } { 3 } $$,求cosα. 相关知识点: 试题来源: 解析 【解析】 ∵$$ \frac { \pi } { 2 } 结果一 题目 【题目】已知a为镜角,c(-)-,求cos 答案 【解析】 2ana3,又 co(a-),...
সঠিক উত্তরটি নির্বাচন করো cos15°+sin15°= IfA=[cosαsinα−sinαcosα], show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}]. View Solution দুটি পরস্পর পৃথক ...
( \pi + \alpha ) = \textcircled { 1 1 } \_ \_ \_ $$ 两个角的同一三角函数值的$$ \tan ( \pi + \alpha ) = \textcircled { 1 2 } $$关系$$ \sin ( \frac { \pi } { 2 } - \alpha ) = \textcircled { 1 3 } \_ $$公式五$$ \cos ( \frac { \pi } { 2...
sin 3 alpha = 4 sin alpha sin(x + alpha) sin(x-alpha) 05:22 The general solution of 4 sin^4 x + cos^4x= 1 is 02:39 For n in Z , the general solution of (sqrt(3)-1)sintheta+(sqrt(3)+1)c... 02:34 The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2...
【解析】 【答案】分析:由cos2α的值大于0,根据2α的范 围得到2α的具体范围,进而确定出α的范围,再利 用二倍角的余弦函数公式化简已知等式的左边,根据α的范围,开方求出cosα的值,利用同角三角函 数间的基本关系求出sinα的值,然后把所求式子的 分子第一、三项结合,利用二倍角的余弦函数公式 化...
{ 4 } ) } { \cos ( \pi + 2 \alpha ) } = \sqrt { 2 } $$,则:$$ \sin \alpha + \cos \alpha = ( ) $$ A.-$$ \frac { \sqrt { 2 } } { 2 } $$ B.$$ \frac { \sqrt { 2 } } { 2 } $$ C.-$$ \frac { 1 } { 2 } $$ D.$$ \frac { 1...
If a is any real number then :(sin^(4)alpha+sin^(2)alpha*cos^(2)alpha+cos^(2)alpha)/(sin^(2)alpha+sin^(2)alpha*cos^(2)alpha+sin^(2)alpha)= View Solution Let alpha=(pi)/(5) and A,=[[cos alpha,sin alpha-sin alpha,cos alpha]] then B=A^(4)-A^(3)+A^(2)-A is...
【题目】已知$$ \cos ( \frac { \pi } { 2 } - \alpha ) = m ( | m | 答案 【解析】答案:B. $$ \cos ( \frac { \pi } { 2 } - \alpha ) = \sin \alpha = m , $$ 由$$ \frac { \pi } { 2 } 0 $$,且$$ \cos \alpha 结果二 题目 【题目】已知 cos(π...