引入了一种称为CNN-LSTM+MV的方法,结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的优点,用于股票选择和最优组合构建。 提出了一种综合性能评估的深度学习模型,该模型在预测金融时间序列方面优于单一模型。 利用MV模型和预测值实现了有利的回报、风险和风险回报指标,提高了预测准确性和组合绩效。 Analyzing Financia...
卷积网络。对输入数据进行卷积神经网络(CNN)处理,提取其特征表示。LSTM网络。将卷积网络提取的特征序列输入长短期记忆神经网络(LSTM),将其转化为单一输出。输出LSTM网络的预测结果。 在该算法中,卷积网络用于提取输入数据的特征,LSTM网络将卷积网络提取的特征序列转化为单一输出,并保留其时间序列信息,从而能够更好地预测...
程序名称:基于Bayes-CNN-LSTM的时间序列预测 实现平台:Matlab 代码简介:为了精准地预测,基于历史时间序列数据进行建模,提出了一种基于Bayes-CNN-LSTM网络的时间序列预测模型。基于Bayes-CNN-LSTM的时间序列预测模型是一种结合了贝叶斯寻优、卷积神经网络(CNN)和长短时记忆网络(LSTM)的混合模型。旨在利用每种技术的优势...
QRCNN-LSTM是一种结合了卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的深度学习模型,用于时间序列预测。它的核心思想是将CNN用于提取时间序列的局部特征,然后将这些特征输入到LSTM中进行整体建模。在此基础上,QRCNN-LSTM模型还引入了分位数回归(Quantile Regression)的概念,可以用于预测时间序列的不同分位数区间范围...
基本介绍 1.Matlab实现基于QRCNN-LSTM分位数回归卷积长短期记忆神经网络的时间序列区间预测模型; 2.多图输出、多指标输出(MAE、RMSE、MSE、R2),多输入单输出,含不同置信区间图、概率密度图; 3.data为数据集,…
1.使用CNN模型预测未来一天的股价涨跌-CNN(卷积神经网络) 使用CNN模型预测未来一天的股价涨跌 数据介绍 open 开盘价;close 收盘价;high 最高价 low 最低价;volume 交易量;label 涨/跌 训练规模 特征数量×5;天数×5 = 5 × 5 卷积过程 最大池化过程 ...
SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测(Matlab) 所有程序经过验证,保证有效运行。 可有偿替换数据及其他服务。 2.输入数据为单变量时间序列数据,即一维数据; 3.运行环境Matlab2020b及以上,data为数据集,运行主程序SSA-CNN-LSTMTS,其余为函数文件无需运行,所有程序和数据放在一个文件夹; ...
卷积神经网络(CNN)、长短期记忆网络(LSTM)以及门控单元网络(GRU)是最常见的一类算法,在kaggle比赛中经常被用来做预测和回归。今天,我们就抛砖引玉,做一个简单的教程,如何用这些网络预测时间序列。因为是做一个简单教程,所以本例子中网络的层数和每层的神经元个数没有调试到最佳。根据不同的数据集,同学们可以自己...
【基于CNN-LSTM-Multihead-Attention-KDE多头注意力卷积长短期记忆网络多变量时间序列区间预测】基于CNN-LSTM-Multihead-Attention-KDE多头注意力卷积长短期记忆网络多变量时间序列区间预测,多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指标输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单...
1.Matlab实现基于QRCNN-LSTM-Multihead-Attention卷积神经网络结合长短期记忆神经网络多头注意力多变量时间序列区间预测; 2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指比输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单输出,含点预测图、不同置信区间预测图、误差分析图、核密度估计...