(3)残差连接:防止梯度消失,输入可跳过隐藏层,直达下一层,反之方向传播时深层梯度更容易传回浅层 2.长短期记忆网络(Long Short-Term Memory Network,LSTM) 2.1 基本概念 定义: 是RNN的一个变体,能有效解决RNN的梯度爆炸/消失问题;在GRU基础上引入新的内部状态c,使用三种门控制记忆和遗忘 构成: c:内部状态,用于...
LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力! 所有RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。 LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。
CNN缺点: (1)当网络层数太深时,采用反向传播调整内部参数会使得接近于输入层的变化较慢;(2)采用梯度下降进行迭代时很容易使得训练结果收敛于局部最优而非全局最优; (3)池化层会丢失一定的有价值信息,忽略了局部与整体之间的关联性; (4)特征提取的物理含义不是十分明确,导致可解释性一般。
与 CNN/RNN 相比,它具有 LSTM 的一些缺点。他们是: 复杂性:LSTM 比传统的 RNN 更复杂。此外,参数数量的增加会使它们更容易出现过度拟合。 计算密集型:由于其复杂性和涉及的参数数量,与 CNN 或 RNN 相比,LSTM 需要更多的计算资源。 训练时间长:由于其复杂性和循环计算的性质,LSTM 可能需要很长时间...
CNN优点:局部权值共享,平移不变性可以更好提取特征以及处理高维数据;缺点:网络过深时其梯度回传变化相对于输入往往很小,出现梯度消失或爆炸的情况;解释性一般 RNN优点:相比于CNN,RNN结合序列上的时序上下文来提取特征,但是在处理序列数据时没有进行信息的过滤,在稍长序列中就会出现梯度消失、爆炸的情况 LSTM优点:LSTM...
缺点: 1.计算复杂度较高:由于引入了门控机制,LSTM相对于传统的RNN模型而言计算复杂度更高。这可能导致在大规模数据集或复杂模型中的训练和推理过程较慢。 2参教量较多:LSTM网终中的门控单元和记忆单元增加了网终的参数量,特别是当网络层数较多时,参数量会进一步增加。这可能导致需要更多的训练数据和计算资源来进...
51CTO博客已为您找到关于CNN和LSTM的优缺点的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及CNN和LSTM的优缺点问答内容。更多CNN和LSTM的优缺点相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。