cnn_lstm_model函数定义了一个CNN-LSTM结构,用于时序数据的特征提取和预测。 def cnn_lstm_model(): inputs = Input(shape=(vp_train.shape[1], vp_train.shape[2])) conv1d = Conv1D(filters=32, kernel_size=2, activation='relu')(inputs) maxpooling = MaxPooling1D(pool_size=2)(conv1d) resha...
class CNNLSTMModel(nn.Module): def __init__(self, window=5, dim=4, lstm_units=16...
self.best_score = score self.save_checkpoint(val_loss, model) def save_checkpoint(self, val_loss, model): '''Saves model when validation loss decrease.''' if self.verbose: print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') torch....
读取数据->生成标签(下一天收盘价)->分割数据集->LSTM模型预测->可视化->预测结果评估 LSTM网络结构: 函数介绍: 1、generate_label 生成标签(下一天收盘价) 2、generate_model_data 分割数据集 3、evaluate 结果评估 4、lstm_model LSTM预测模型 5、main 主函数(含可视化) 可视化输出: 训练集测试集拟合效果: ...
Harnessing a Hybrid CNN-LSTM Model for Portfolio Performance: A Case Study on Stock Selection and Optimization 方法:论文提出了一种名为CNN-LSTM+MV的金融投资决策方法。该方法通过将卷积神经网络(CNN)和长短期记忆网络(LSTM)的优势相结合,实现了对股票的选择预测和通过均值方差(MV)模型进行优化组合形成的综合...
LSTM每个循环的模块内又有4层结构:3个sigmoid层,1个tanh层 LSTM每个模块的4层结构后文会详细说明,先来解释一下基本的图标。 粉色的圆圈表示一个二目运算。两个箭头汇合成一个箭头表示2个向量首尾相连拼接在一起。一个箭头分叉成2个箭头表示一个数据被复制成2份,分发到不同的地方去。
LSTM网络结构: 函数介绍: 1、generate_label 生成标签(下一天收盘价) 2、generate_model_data 分割数据集 3、evaluate 结果评估 4、lstm_model LSTM预测模型 5、main 主函数(含可视化) 可视化输出: 训练集测试集拟合效果: 评估指标: 1、RMSE:55.93668241713906 ...
2、generatemodeldata 分割数据集 3、evaluate 结果评估 4、lstm_model LSTM预测模型 5、main 主函数(含可视化) 可视化输出: 训练集测试集拟合效果: 评估指标: 1、RMSE:55.93668241713906 2、MAE:44.51361108752264 3、MAPE:1.3418267677320612 4、AMAPE:1.3420384401412058 ...
金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用) 1.使用CNN模型预测未来一天的股价涨跌-CNN(卷积神经网络) 使用CNN模型预测未来一天的股价涨跌 数据介绍 open 开盘价;close 收盘
读取数据->生成标签(下一天收盘价)->分割数据集->LSTM模型预测->可视化->预测结果评估 LSTM网络结构: 函数介绍: 1、generate_label 生成标签(下一天收盘价) 2、generate_model_data 分割数据集 3、evaluate 结果评估 4、lstm_model LSTM预测模型 5、main 主函数(含可视化) ...