【2025版】不愧是吴恩达教授!一口气讲透CNN、RNN、GAN、GNN、DQN、Transformer、LSTM等八大深度学习神经网络算法!简直不要太爽!共计163条视频,包括:神经网络概览(、神经网络的表现形式(、计算神经网络的输出(等,UP主更多精彩视频,请关注UP账号。
在本系列教程中,将带你从了解深度学习和神经网络基础到构建神经网络模型,再到实战应用,涵盖了卷积神经网络(CNN)、循环神经网络(RNN)、图神经网络(GNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)、变分自编码器(VAE)、以及Transtomer模型等。通过理论讲解与实例演示相结合,你将掌握深度学习的基本原理、应用场景和...
深度学习模型的统一表示:CNN, RNN, GNN 和 Transformer RPN 实现了丰富的功能函数,具体列表如上图所示。通过组合使用上述功能函数,RPN 2 不仅可以构建功能强大的模型结构,并且可以统一现有基础模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。 实验验证 为了验证提出的 RPN 2 模型的有效性,本文通过大量的实验结果...
CNN、RNN、GNN这么多的神经网络有什么区别和联系? 先聊聊什么是神经网络吧 我们的目标是打造人工智能,拥有智慧的大脑无疑是最好的模仿对象。人脑中约有860亿个神经元,这被认为是我们能够思考的原因。神经元有一个细胞体和很多突触组成,能处理电信号,并将它们传递到该去的地方,仿照人脑神经元和工作原理,人们构建了...
CNN、RNN、GNN……这么多的神经网络,有什么区别和联系? 那就先聊聊什么是神经网络(Neural Network)吧。 既然我们的目标是打造人工智能,拥有智慧的大脑无疑是最好的模仿对象。人脑中有约 860 亿个神经元,这被认为是我们能够思考的原因。神经元由一个细胞体和很多突触组成,能处理电信号,并将它们传递到该去的地方...
先来看看 GNN 的主要结构,对于一张有节点和边的图 算某个节点的特征表示时,是通过neighbourhood aggregation搜集相邻节点特征来更新自身表示,从而能学习到图上的局部结构。而和 CNN 类似,只要叠个几层,就能慢慢将学习范围扩大,传播至整张图。 所以最基本的计算形式是下面这个公式, 和 都是学习参数,然后 是计算节点...
一口气通关CNN、RNN、GAN、GNN、DQN、Transformer、LSTM、DBN八大深度算法!全程高能堪比追剧体验! 强推!绝对是B站最好的神经网络算法教程,从入门到进阶,通俗易懂,一口气吃透CNN、RNN、GAN、Transformer、LSTM等八大深度学习神经网络算法! 【全122集】冒死上传!CNN、RNN、GAN、GNN、DQN、Transformer、LSTM等八大深度学习...
深度学习模型的统一表示:CNN, RNN, GNN 和 Transformer RPN 实现了丰富的功能函数,具体列表如上图所示。通过组合使用上述功能函数,RPN 2 不仅可以构建功能强大的模型结构,并且可以统一现有基础模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。 实验验证 ...
深度学习模型的统一表示:CNN, RNN, GNN 和 Transformer RPN 实现了丰富的功能函数,具体列表如上图所示。通过组合使用上述功能函数,RPN 2 不仅可以构建功能强大的模型结构,并且可以统一现有基础模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。 实验验证 ...
先来看看 GNN 的主要结构,对于一张有节点和边的图 算某个节点的特征表示时,是通过neighbourhood aggregation搜集相邻节点特征来更新自身表示,从而能学习到图上的局部结构。而和 CNN 类似,只要叠个几层,就能慢慢将学习范围扩大,传播至整张...