作者将神经网络鲁棒性问题转换成局部Lipschitz常数的估计问题,并利用极值理论方法进行评估,进而提出了一种度量神经网络鲁棒性的通用方法-CLEVER,该方法可以对不可知的攻击方式进行评估,并且对于大规模的神经网络计算成本较少。该论文涉及到大量的数学推导,需要沉下心来慢慢琢磨。 论文链接:arxiv.org/abs/1801.1057 数学...
作者将神经网络鲁棒性问题转换成局部Lipschitz常数的估计问题,并利用极值理论方法进行评估,进而提出了一种度量神经网络鲁棒性的通用方法-CLEVER,该方法可以对不可知的攻击方式进行评估,并且对于大规模的神经网络计算成本较少。该论文涉及到大量的数学推导,需要沉下心来慢慢琢磨。 详细信息如下: 论文链接:https://arxiv.o...
作者将神经网络鲁棒性问题转换成局部Lipschitz常数的估计问题,并利用极值理论方法进行评估,进而提出了一种度量神经网络鲁棒性的通用方法-CLEVER,该方法可以对不可知的攻击方式进行评估,并且对于大规模的神经网络计算成本较少。该论文涉及到大量的数学推导,需要...
不失一般性,假定对于有个不同的数值,令是升序排列,的概率分布函数可以被定义为如下所示 其中,且有 ,表示的是在维空间中的容量。 给定一个样本,分类器函数为,目标类别为。分类器鲁棒性的有目标攻击的CLEVER分数能通过和,同理无目标攻击的CLEVER也可以被计算出来,具体的算法流程图如下所示 04 实验结果 如下坨屎...
一种通用方法:CLEVER 导言: 神经网络鲁棒性评估一直是深度学习领域中一个热门的研究方向,该论文是通用评估神经网络鲁棒性方法的开山之作。作者将神经网络鲁棒性问题转换成局部Lipschitz常数的估计问题,并利用极值理论方法进行评估,进而提出了一种度量神经网络鲁棒性的通用方法-CLEVER,该方法可以对不可知的攻击方式进行评估...
一种通用方法:CLEVER 导言: 神经网络鲁棒性评估一直是深度学习领域中一个热门的研究方向,该论文是通用评估神经网络鲁棒性方法的开山之作。作者将神经网络鲁棒性问题转换成局部Lipschitz常数的估计问题,并利用极值理论方法进行评估,进而提出了一种度量神经网络鲁棒性的通用方法-CLEVER,该方法可以对不可知的攻击方式进行评估...