CIFAR-10和CIFAR-100是带有标签的数据集,都出自于规模更大的一个数据集,它有八千万张小图片(http://groups.csail.mit.edu/vision/TinyImages/)。CIFAR-10和CIFAR-100的共同主页是:http://www.cs.toronto.edu/~kriz/cifar.html CIFAR-10数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张...
该数据集共有60000张彩色图像,图像大小是3通道的32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据里,取自10类中的每一类,每一类随机取1000张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定数...
CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图 片:飞机( a叩lane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck...
CIFAR-10数据集是一个包含60000张32×32彩色图像的图像分类数据集,分为10个类别,每个类别有6000张图像。 CIFAR-10数据集是计算机视觉领域中一个广泛使用的图像分类基准数据集,由加拿大高级研究院(CIFAR)的人工智能研究小组开发,以下是关于CIFAR-10数据集的详细介绍: 一、数据集简介 CIFAR-10数据集包含60000张32×32...
CIFAR-10数据集 CIFAR-10数据集由10个类的60000个32×32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。 数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序包含剩余图像,但一些训练批次可能包含来自一个类...
1、cifar 10 数据集简介 cifar 10相比于MNIST数据集而言更为复杂,其拥有10个种类**(猫、飞机、汽车、鸟、鹿、狗、青蛙、马、船、卡车)**,这十大类共同组成了50000的训练集,10000的测试集,每一张图片都是32*32的3通道图片(彩色图片),在神经网络中,通常表示成如下形式: ...
今天,给大家介绍一个经典的图像分类数据集——CIFAR-10,其广泛用于机器学习领域的计算机视觉算法基准测试。虽然经过10多年的发展,这个数据集的识别问题已经被“解决”,很多模型都能轻松达到80%的分类准确率,…
1 cifar10 数据介绍 1.1 数据来源 官方网址:CIFAR-10 and CIFAR-100 datasets CIFAR-10 是一个图像分类数据集,其中包含 10 类不同类型的彩色图片,每类图片有 6000 张,共计 60000 张图片。每张图片的分辨率为 32x32 像素,包含 3 个颜色通道(RGB),因此每张图片的大小为 32x32x3。 CIFAR-10 数据集的 10 个...
01-Cifar10 数据集简介 Cifar10数据集由6万张32*32的彩色图片组成,一共有10个类别。每个类别6000张图片。其中有5万张训练图片及1万张测试图片。 数据集被划分为5个训练块和1个测试块,每个块1万张图片。测试块包含了1000张从每个类别中随机选择的图片。训练块包含随机的剩余图像,但某些训练块可能对于一个类别...