一、Lora LoRA 微调技术的思想很简单,在原始 PLM (Pre-trained Language Model) 增加一个旁路,一般是在 transformer 层,做一个降维再升维的操作,模型的输入输出维度不变,来模拟 intrinsic rank,如下图的 A 和B。训练时冻结 PLM 的参数,只训练 A 和B,,输出时将旁路输出与 PLM 的参数叠加,进而影响原始模型的...
当前主流的LLM模型微调方法有prefix-tuning,p-tuning和lora等方法,其中LORA更注重对特征的解释和理解,而P-Tune更注重对模型参数的微调 官方网址: github.com/THUDM/ChatGL 本文根据官方评测结果,将选取P-Tuning v2技术,对chatGLM2-6B 模型进行微调 训练完成后的效果 微调步骤 前置条件 微调之前,你需要先参考上篇,...
ChatGLM2-6b是清华开源的小尺寸LLM,只需要一块普通的显卡(32G较稳妥)即可推理和微调,是目前社区非常活跃的一个开源LLM。 本范例使用非常简单的,外卖评论数据集来实施微调,让ChatGLM2-6b来对一段外卖评论区分是好评还是差评。 可以发现,经过微调后的模型,相比直接 3-shot-prompt 可以取得明显更好的效果。 值得注意...
accelerate config # 首先配置分布式环境 accelerate launch src/train_bash.py ... # 微调,参数同上 注:注意:若您使用 LoRA 方法进行微调,请指定以下参数 --ddpfindunused_parameters False 来避免报错。 模型部署 部署在项目框架中,请使用 export_model.py 将微调后的权重合并到 ChatGLM-6B 模型中并导出完整模型。
对ChatGLM2-6B和ChatGLM-6B进行微调以适应特定领域或任务的方法有以下几种: 使用P-Tuning v2方法:官方推荐的微调方法,通过添加可学习的软提示(soft prompts)来调整模型行为,无需改变模型参数。包括准备自定义数据集、修改微调脚本参数,然后运行微调和评估脚本。
在第一代ChatGLM-6B上,模型的最高上下文长度是2K。而第二代的ChatGLM2-6B的基座模型使用了FlashAttention技术,升级到32K。而据此微调的对话模型ChatGLM2-6B则可以在8K长度上下文条件下自由流畅进行对话。因此,支持更多轮次的对话,并且官方表示将在后续继续优化上下文长度限制。ChatGLM2-6B升级3:更高效的推理,更...
这种方法可以在保持模型性能的同时,显著减小模型的存储需求和推理时间。一、LoRA微调原理LoRA微调的基本思想是通过将大模型的权重矩阵分解为低秩矩阵和稀疏矩阵的和,从而实现对大模型的压缩和加速。这种分解可以有效地降低模型的存储需求和计算复杂度,同时保持模型的性能。二、应用LoRA微调在本节中,我们将详细介绍如何使用...
P-tuning v2是一种新的微调方法,也是chatglm官方仓库使用的微调方法。它的基本思想是在原有的大型语言模型上添加一些新的参数,这些新的参数可以帮助模型更好地理解和处理特定的任务。具体来说,P-tuning v2首先确定模型在处理特定任务时需要的新的参数(这些参数通常是模型的某些特性或功能),然后在模型中添加这些新的...
模型微调 准备好训练数据, 执行train.shIn [ ] # 使用p-tuning对chatglm-6b进行微调 # 先手动把ptuningv2.zip解压到work/ptuningv2 , 再执行train.sh, 训练参数也是在这个文件中设定的 !bash work/ptuningv2/train.sh # train.sh内容 # PRE_SEQ_LEN=128 # LR=2e-2 # CUDA_VISIBLE_DEVICES=0 python...
LORA(Low-Rank Adaptation of Large Language Models)微调方法: 冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。 ![]() LoRA 的思想: •在原始 PLM (Pre-trained Language Model) 旁边增加一个旁路,做一个降维再升维的操作。