Chaos and Dynamical Systemsdoi:10.1515/9780691189390David Feldman
[1] 维基百科, Chaos theory, https://en.wikipedia.org/wiki/Chaos_theory [2] Alligood, K.T.; Sauer, T.; Yorke, J.A. (1997). Chaos: an introduction to dynamical systems. Springer-Verlag. ISBN 978-0-387-94677-1. [3] Lorenz, Edward N. (1963). Deterministic non-periodic flow. Jou...
dynamical system (redirected fromDynamical systems and chaos theory) Thesaurus Encyclopedia dynamical system n. MathematicsA space together with a transformation of that space, such as the solar system transforming over time according to the equations of celestial mechanics. ...
1. 【假设您已学过,温故知新】Nonlinear dynamic systems(非线性动态系统)致虚极,守静笃,万物并...
“Chaos and Dynamical Systemsis a great introduction to nonlinear dynamics, bifurcations, and chaos. It is easy to follow and understand, yet also provides a generous amount of mathematical detail, which will satisfy technically oriented minds too. This book’s core take-home message, that simple...
EdwardOttChaosinDynamicalSystemsCategory:ChaosTheoryPublisher:CambridgeUniversityPress;2edition(September9,2002)Language:EnglishPages:492ISBN:978-0521010849Size:23.79MBFormat:PDF/ePub/KindleIntheneweditionofthisclassictextbookEdOtthasaddedmuchnewmaterialandhassignificantlyincreasedthenumberofhomeworkproblems.Themost...
ChaosinDynamicalSystems-UniversityofKansas动力系统中的混沌-勘萨斯大学 DynamicalSystems •DeterministicMathematicalModels•EvolvingStateofSystems(changesastimegoeson)Chaos •ExtremeSensitiveDependenceonInitialConditions•TopologicallyMixing•PeriodicOrbitsareDense•EvolvetoAttractorsasTimeApproachesInfinity Examplesof...
副标题:Introduction to Applied Nonlinear Dynamical Systems and Chaos 2nd 出版年:2013-6 定价:125.00 装帧:平装 ISBN:9787510058448 豆瓣评分 评价人数不足 评价: 写笔记 写书评 加入购书单 分享到 推荐 内容简介· ··· 本书是一部高年级的本科生和研究生学生学习应用非线性动力学和混沌的入门教程。本书的...
网络离散动力系统混沌 网络释义 1. 离散动力系统混沌 ...学与系统科学学院博士生导师史玉明教授的报告题目为“离散动力系统混沌(Chaos in Discrete Dynamical Systems)”。 ndnews.imu.edu.cn|基于 1 个网页
22.DefinitionofDiscreteDynamicalSystems9GoalsofThisBook12Section2.StationaryStatesandPeriodicOrbits161.StationaryStates16StableStationaryStates182.PeriodicOrbits21StablePeriodicOrbits23Section3.ChaoticDynamicalSystems251.LimitPoints,LimitSets,andAperiodicOrbits252.UnstableOrbitsandChaoticSystems30ChaoticBehavior33Section4....