// C program to calculate the sum of array elements// using pointers as an argument#include <stdio.h>intCalculateSum(int*arrPtr,intlen) {inti=0;intsum=0;for(i=0; i<len; i++) { sum=sum+*(arrPtr+i); }returnsum; }intmain() {intintArr[5]={10,20,30,40,50};intsum=0;...
int array['a']; //表示int array[97]; 上述定义之所以合法,因为表示元素个数的常量表达式在编译时就具有确定的意义,与变量的定义一样明确地分配了固定大小的空间。 虽然使用符号常量增强了数组的灵活性,但如果定义采用了以下的形式: int n = 5; int array[n]; //非法 因为标准C认为数组元素的个数n不是...
sizeof(double));printf("Type long has a size of %zd bytes.\n",sizeof(long));printf("Type long long has a size of %zd bytes.\n",sizeof(long long))
darray[] = {70.0, 83.2, 91.5, 72.1, 55.5}; long int len; double sum; // call an assembly function with int arguments printf("Compute area and circumference of a rectangle\n"); printf("Enter the length of one side : \n"); scanf("%d", &side1 ); printf("Enter the length of ...
// function_ptr_arr can be an array of function pointers void (*function_ptr_arr[])(double, double) = {add, subtract, multiply, division}; double a = 0, b = 1; int ch; printf("Enter: 0 to add, 1 subtract, 2 multiply, 3 divid\n"); ...
sum=fun(x,y,z); printf("The result is : %5.2f\n",sum);return0; } 3.程序设计题 假定输入的字符串中只包含字母和*号。编写函数fun,它的功能是:将字符串中的前导*号全部删除,中间和尾部的*号不删除。 例如,字符串中的内容为:***A*BC*DEF*G***,删除后,字符串的内容应当为:A*BC*DEF*G...
Write a function to add the first and last elements of an array. The function takes an array of integer array and an integer array_size, which is the length of the array. Return the sum of the first and last elements of the array. For example, if array = [10, 20, 30, 40, 50]...
choose an indexiand replacenums[i]with-nums[i]. You should apply this process exactlyktimes. You may choose the same indeximultiple times. Returnthe largest possible sum of the array after modifying it in this way. Example 1: Input: nums = [4,2,3], k = 1 ...
Array(int arr[], int size) { int i =0; printf("\nEnter elements : \n"); for(i=0; i<size; i++) { printf("Enter arr[%d] : ",i); scanf("%d",&arr[i]); } } /** funtion : getSum() input : arr ( array of integer ), size to get sum of all elements of array. ...
Draw the recursion tree for the MERGE-SORT procedure from Section 2.3.1 on an array of 16 elements. Explain why memoization fails to speed up a good divideand-conquer algorithm such as MERGE-SORT. 递归树的形式化描述: Let [i..j ] denote the call to Merge Sort to sort the elements in...