这两大主流技术在其特征学习阶段都采用了CNN+RNN的网络结构,CRNN OCR在对齐时采取的方式是CTC算法,而attention OCR采取的方式则是attention机制。本部分主要介绍应用更为广泛的CRNN算法。 一、CRNN 1.1 CRNN 介绍 CRNN 模型,即将 CNN 与 RNN 网络结合,共同训练。主要用于在一定程度上实现端到端(end-to-end)地...
文章目录前言一、CRNN 1.1 CRNN 介绍 1.2 CRNN 网络结构 1.2.1 CNN 1.2.2 Map-to-Sequence 1.2.3 RNN 1.2.4 CTC Loss...1.2.4.1 序列合并机制 1.2.4.2 训练阶段 1.2.4.3 测试阶段 1.3 CRNN 小结 1.4 C...
1、CRNN 介绍 CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用先对单个文字进行切割,而是将文本识别转化为时序依赖的序列学习问题,就是基于图像的序列识别。 图来自文章:一文读懂CRNN+CTC文字识别 整个CRNN网络结构包含三部分,从下到上依次为: CNN(卷积层),...
在训练阶段CRNN将特征图像统一缩放到w×32,而在测试阶段对于输入的图片拉伸会导致识别率降低。CRNN保持输入图像尺寸比例,但是图像的高度h必须统一为32,卷积特征图的尺寸动态决定了LSTM的时序长度(时间步长)。 CRNN OCR文本识别模型以其独特的架构和卓越的性能,在图像文本识别领域展现出了强大的生命力和应用潜力。随着...
CRNN(Convolutional Recurrent Neural Network,卷积循环神经网络)是一种在OCR(Optical Character Recognition,光学字符识别)领域广泛使用的深度学习模型,特别适用于文本序列的识别,如手写体识别、场景文本识别等。CRNN结合了卷积神经网络(CNN)和循环神经网络(RNN)的优点,能够有效地处理图像中的序列数据。在信息爆炸的时代,...
CRNN车牌识别训练集与基础详解 引言 随着智能交通系统的快速发展,车牌识别技术已成为交通管理、停车场管理、车辆监控等领域不可或缺的一部分。作为深度学习在图像识别领域的重要应用,CRNN(Convolutional Recurrent Neural Network,卷积循环神经网络)因其卓越的性能,在车牌识别中占据了重要地位。本文将详细介绍CRNN车牌识别...
CRNN是《An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition》中提出的模型,解决图像中文字识别问题。 论文地址:https://arxiv.org/abs/1507.05717 github地址:https://github.com/bgshih/crnn ...
本文主要是根据论文《An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition》翻译总结而来。CRNN可以识别不同大小,不同长度的图片文字。论文还识别了乐谱,理论上该模型也可以有效的识别中文,不区分语言。
近几年来,CRNN在计算机视觉文本识别领域取得不错成果。CRNN是一种卷积循环神经网络结构,用于解决基于图像的序列识别问题,特别是场景文字识别问题。CRNN网络实现了不定长验证结合CNN和RNN网络结构,使用双向LSTM循环网络进行时序训练,并在最后引入CTC损失函数来实现端对
1、CRNN CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别。CRNN不用先对单个文字进行切割,而是将文本识别转化为时序依赖的序列学习问题,就是基于图像的序列识别。CRNN是最经典的文字识别模型。CRNN网络结构包含三部分,如图15所示,从下到上依次为:卷积层,使用CNN,作...