Pass vector position in std::for_each 我有一个稀疏压缩列格式的数据结构。 对于我给定的算法,我需要遍历数据"列"中的所有值并进行大量处理。当前,使用常规的for循环可以很好地工作。老板希望我将此代码重新编码为for_each循环,以便将来进行并行化。 对于那些不熟悉稀疏压缩列的人,它使用2(或3)个向量表示数
How to watch each element in a vector when debugging how to work with font on C++ (.ttf) How to write a DCOM project using VC++ How to write a UTF8 Unicode file with Byte Order Marks in C/C++ How to write in a new line in a file in MFC? How to write into a csv file in ...
for_each(buffer, buffer + N, … // Proceed with data packing 另一种解决方案是用推力库中的thrust::device_vector替换 STL 向量,默认情况下,推力库使用固定 GPU 内存。 在不久的将来, HPC SDK 将为用户更高效、更自动地处理这些情况。这样他们就不必伸手去拿cudaMalloc或thrust::device_vector。所以,请继...
DMA搬入单元把数据搬运到Local Memory,Vector/Cube计算单元完成数据计算,并把计算结构写回Local Memory,DMA搬出单元把处理好的数据搬运回Global Memory SPMD编程模型介绍 Ascend C算子编程是SPMD的编程,将需要处理的数据拆分并行分布在多个计算核心上运行多个AI Core共享相同的指令代码,每个核上的运行实例唯一的区别是block...
audio.Load("explosion.wav");// Start the game loopwhile(window.isOpen()) {// Only run approx 60 times per secondfloatelapsed = clock.getElapsedTime().asSeconds();if(elapsed <1.0f/60.0f)continue; clock.restart(); sf::Event event;while(window.pollEvent(event)) {// Handle window events...
std::vector<int> integers; for (auto i = 1; i < argc; i++) { integers.push_back(std::stoi(argv[i])); } auto sum = sum_integers(integers); std::cout << sum << std::endl; } 我们的目标是使用 C++可执行文件(test.cpp)、Bash shell 脚本(test.sh)和 Python 脚本(test.py)来测...
cdr;}pair;struct{intlength;char*elts;}string;struct{intlength;SCM*elts;}vector;...}value;};...
that it determines are safe to parallelize. Typically, these loops have iterations that are independent of each other. For such loops, it does not matter in what order the iterations are executed or if they are executed in parallel. Many, though not all, vector loops fall into this category...
In the example below, ssGetRealDiscStates obtains a pointer to the discrete state vector. The for loop then initializes each discrete state to one. #define MDL_INITIALIZE_CONDITIONS /* Function: mdlInitializeConditions === * Abstract: * Initialize both discrete states to one. */ static void ...
硬件单元 Vector侧:UB Cube侧:L1和L0C 单核:核内流水并行,调tiling,减少循环次数 多核:多核切分数据 代码实现优化 API指令 Cache优化 层次化访存优化 Buffer优化措施 shape对齐亲和计算 计算资源利用优化 十六、个人见解 host侧tiling实现:core内部存储不够大,需要对输入数据进行切片,搬入搬出。