贝塞尔函数(Bessel functions)是一类函数的总称,基于下述常微分方程得到。 x2d2ydx2+xdydx+(x2−α2)y=0 该方程的通解无法用初等函数表示,一种典型的解形式如下。 y(x)=c1Jα+c2Yα(x) 其中, Jα(x) 为第一类贝塞尔函数, Yα(x) 为第二类贝塞尔函数(Bessel function of the second kind)[1]...
也许你可以试试boost库。gcc的libstdc++的实现是自己手写的 gcc/libstdc++-v3/include/tr1/bessel_funct...
{ result = Bessel(n, x); printf("J[n](x) = %f\n",result); } else { printf("The function of bessel's is went to ∞ !"); } system("pause"); } double Bessel(int n, double x) { if (n == 1) //结束条件1 { return sin(x) / x; } else if (n == 2) //结束条件2...
{ result=Bessel(n,x); printf("J[n](x) = %f\n",result); } else { printf("The function of bessel's is went to ∞ !"); } system("pause"); } doubleBessel(intn,doublex) { if(n==1)//结束条件1 { returnsin(x)/x; } elseif(n==2)//结束条件2 { returnsin(x)/(x*x)-...
double bessel_k1_scaled( double x ) Parametersx [input] the argument x of the functionReturnReturns a value of scaled modified Bessel function exp(x)K1(x)ExamplesEX1void bessel_k1_scaled_ex1() { double dx[6] = {0.4,0.6,1.4,2.5,10.0,1000.0}; double dResults[6]; for(int ii = 0; ...
2.1.16.6.3.17 bessel_k_nu Description Modified Bessel function K/4(x) Syntax doublebessel_k_nu(doublex,intnu) Parameters x [input] the argument x of the function nu [input] the argument V of the function Return Returns tha value of modified Bessel function K/4(x) ...
Function: double jn (int n, double x)jn returns the Bessel function of the first kind of ...
This example computes y to be the order 0 Bessel function of the first kind for x. It also computes zto be the order 3 Bessel function of the second kind for x. #include #include int main(void) { double x, y, z; = 4.27; y = j0(x); z = yn(3,x); /* y = -0.3660...
i want to find the solution to an equation... Learn more about bessel function, newton raphson
Bessel function of the first kind, order 1 jn Bessel function of the first kind, order n labs integer conversion: absolute value ldexp floating-point conversion: load exponent _ldexp fast implementation of ldexp ldiv integer conversion: division log compute the natural logarithm ...