typedef int BTDataType;//定义二叉树节点typedef struct BinaryTreeNode{BTDataType data;//存放的数据struct BinaryTreeNode*leftchild;//指向左孩子的指针struct BinaryTreeNode*rightchild;//指向右孩子的指针}BTNode; 二、创建一棵二叉树 由于目前我们所学习的二叉树结构并非是自平衡的,使用固定方法插入数据的意义...
二叉树有以下几个性质:TODO(上标和下标) 性质1:二叉树第i层上的结点数目最多为2***{i-1}(i≥1)。 性质2:深度为k的二叉树至多有2{k}-1个结点(k≥1)。 性质3:包含n个结点的二叉树的高度至少为log2 (n+1)。 性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1。
C语言-平衡二叉树 以前学习的平衡二叉树忘记得差不多了,最近项目需要,又来写一遍。 AVL树分为四种旋转,分别是右右情况,左左情况,左右情况和右左情况 1、左左情况 左左情况,需要右旋转,虚线部分为假想的子树 2、右右情况 右右情况,需要左旋转,虚线部分为假想的子树 3、左右情况 左右情况,第一步是以node->lchi...
①在二叉树的第n层最多只有2^(n-1)个结点(i >= 1); ②深度为k的二叉树至多有2^k - 1个结点(k >= 1); ③对任何一颗二叉树T,如果其终端节点数为N0,度(几个子结点)为2的结点数为N2,则N0 = N2+1; 3.二叉树的形态 ①满二叉树---(除了最下面一层所有的结点度都为2) ②完全二叉树---(叶...
顺序存储结构:适用于完全二叉树和满二叉树的存储; 二叉链表:适合于已知根结点需要对其左右子树进行操作的场合; 三叉链表:适合于需要频繁对父结点进行操作的场合; 在今天的内容中,我们会以二叉链表为例来介绍二叉树中这些基本操作的具体实现,对应的数据类型如下所示: ...
- 二叉树的高度是从根节点到最远的叶子节点的路径长度。- 二叉树的度是所有节点中子节点个数的最大值。那么如何用C语言来实现一个二叉树呢?我们可以用以下几个步骤来实现:1. 定义一个结构体类型,用来表示一个二叉树节点,它包含三个成员:数据域、左子节点指针和右子节点指针。2. 定义一个函数,用来创建...
有序树:树中结点的各子树从左至右有次序(最左边为第一个孩子) 无序树:树中结点的各子树无次序 森林:m(m>=0) 棵互不相交的树的集合 二叉树 定义 二叉树是 n(n>=0) 个结点的有限集,它或者是空集(n = 0),或者由一个根结点及两棵互不相交的分别称作这个根的左子树和右子树的二叉树组成 ...
文件系统的目录树, 树在实际当中,不太作为存储数据这个角度去用,因为意义不是很大。 主要用的是二叉树 二叉树 现实中的二叉树 这还是个满二叉树 概念 与普通的树最大的不同是它最多只有两个子树。 特殊的二叉树 满二叉树:每一层都是满的。 假设一棵满二叉树的高度是 h,那么它的总结点个数是:20+21+22...
2.二叉树 在实际中,二叉树是使用较多的一种树的结构 2.1概念 二叉树是度为2的树,它是一个特殊的树 二叉树不存在度大于2的节点 二叉树是有序树,它的娃(子树)有左右之分,次序不能颠倒 所以,二叉树都是由下面各类节点组成的树 2.2特殊的二叉树
//二叉树的层序遍历voidLevelOrder(BTL T); 1. 2. 这里大家需要注意的是形参T的数据类型是一个一级指针,在涉及到参数为指针时,建议大家养成判断指针是否为空指针的习惯。 1.2.3 函数的实现 由于该算法是借助队列来实现的,因此在进入函数后,我们需要先创建一个队列并将其初始化: ...