选择最佳的(\lambda)后,可以进行Box-Cox变换: # 找到最佳的lambdabest_lambda<-boxcox_result$x[which.max(boxcox_result$y)]# 应用变换transformed_data<-(data^best_lambda-1)/best_lambda# 绘制变换后的数据直方图hist(transformed_data,main="变换后的数据直方图",xlab="值",col="green") 1. 2. 3. ...
当然,也可以使用Box-Cox变换。此外,还可以寻求最佳变换。考虑 > for(p in seq(.2,3,by=.1)) bc=cbind(bc,boxcox(y~I(x^p),lambda=seq(.1,3,by=.1))$y) > contour(vp,vq,bc) 颜色越深越好(这里考虑的是对数似然)。 最佳对数在这里是 > bc=function(a){p=a[1];q=a[2]; (-boxcox(...
2.3 进行Box-Cox变换 在这一步中,我们将使用boxcox函数进行Box-Cox变换。这个函数的第一个参数是我们要变换的数据模型,第二个参数指定了变换的λ值。 # 创建线性模型lm_model<-lm(medv~.,data=Boston)# 创建线性回归模型,medv为因变量# 进行Box-Cox变换boxcox_result<-boxcox(lm_model)# 计算Box-Cox变换...
R语言中的Box-Cox变换 1. 什么是Box-Cox变换? Box-Cox变换是一种数据变换方法,用于将非正态分布的数据转换为更接近正态分布的数据。这种方法由Box和Cox在1964年提出,主要用于时间序列分析和回归分析中,以提高模型的拟合度和预测准确性。Box-Cox变换可以自动选择适当的幂变换参数,使得变换后的数据更接近正态分布。
R语言进行数据结构化转换:Box-Cox变换、“凸规则”变换方法 线性回归时若数据不服从正态分布,会给线性回归的最小二乘估计系数的结果带来误差,所以需要对数据进行结构化转换。 在讨论回归模型中的变换时,我们通常会简单地使用Box-Cox变换,或局部回归和非参数估计。
在R语言中,Box-Cox函数是stats包中的一个重要工具,可以方便地对数据进行变换。 【2】Box-Cox变换的应用场景 Box-Cox变换适用于以下场景: 1.数据分布不均匀,需要进行预处理以提高后续分析的准确性; 2.需要将非正态分布的数据转换为正态分布,以便于进行假设检验和建模; 3.希望对数据进行归一化处理,以便于不同...
```R print(original_series) ``` 需要注意的是,Box-Cox变换适用于具有线性趋势的时间序列。若时间序列不具有线性趋势,可能需要先进行预处理,例如平稳性检验、白噪声检验等。此外,Box-Cox变换的具体参数选择和变换效果可通过绘制变换前后的直方图、QQ图等方法进行评估。 以下是一个关于使用R语言进行时间序列分析的参...
这就是我们通常使用Box-Cox变换进行的操作。另一个想法可以是转换解释变量, 例如,我们有时会考虑连续的分段线性函数,也可以考虑多项式回归。 “凸规则”变换 “凸规则”(_Mosteller_. Fand_Tukey_, J.W. (1978).Data_Analysis_and_Regression_)的想法是,转换时考虑不同的幂函数。
这就是我们通常使用Box-Cox变换进行的操作。另一个想法可以是转换解释变量, 例如,我们有时会考虑连续的分段线性函数,也可以考虑多项式回归。 “凸规则”变换 “凸规则”(Mosteller. FandTukey, J.W. (1978).DataAnalysisandRegression)的想法是,转换时考虑不同的幂函数。
这就是我们通常使用Box-Cox变换进行的操作。另一个想法可以是转换解释变量, 例如,我们有时会考虑连续的分段线性函数,也可以考虑多项式回归。 “凸规则”变换 “凸规则”(_Mosteller_. F _and_ _Tukey_, J.W. (1978). _Data_ _Analysis_ _and_ _Regression_)的想法是,转换时考虑不同的幂函数。