[预训练模型]:最近BERT为代表的预训练模型表现出了强大的文本表示和理解能力,目前最流行的方法是将BERT或BERT-Bi-LSTM作为底层的文本特征编码器,再利用CRF进行实体标签预测。现在,对于许多命名实体识别任务可以将BERT-Softmax、BERT-CRF、BERT-Bi-LSTM-CRF这几个模型作为baseline,而且能达到很好的效果,这几乎得益于BER...
然后,将BERT的输出作为输入送入Bi-LSTM网络进行进一步的处理。最后,将Bi-LSTM的输出作为输入送入CRF模型进行标签预测。在训练过程中,我们使用交叉熵损失作为优化目标,并使用梯度下降算法进行优化。我们可以通过调整超参数、使用不同的预训练BERT模型等方法来提高模型的性能。步骤3:模型评估与调优完成模型构建后,我们需要...
来看下基准模型的实现,输入是wordPiece tokenizer得到的tokenid,进入Bert预训练模型抽取丰富的文本特征得到batch_size * max_seq_len * emb_size的输出向量,输出向量过Bi-LSTM从中提取实体识别所需的特征,得到batch_size * max_seq_len * (2*hidden_size)的向量,最终进入CRF层进行解码,计算最优的标注序列。 代码...
三、模型的搭建 在搭建模型之前,先来瞅一瞅我们在该任务中需要用到的BERT+Bi-LSTM+CRF模型的结构,如下图所示: 然后根据模型的结构及运作流程,完成 Model 部分的搭建,代码如下(小伙伴们也可以尝试去除Bi-LSTM层,直接在BERT后加上CRF模块): importtorchimporttorch.nnasnnfromtransformersimportBertModel# 需要提前 ...
BiLSTM是Bi-directional Long Short-Term Memory的缩写,是由前向LSTM与后向LSTM组合而成。 CRF为条件随机场,可以用于构造在给定一组输入随机变量的条件下,另一组输出随机变量的条件概率分布模型。 环境 采用的Python包为:Kashgari,此包封装了NLP传统和前沿模型,可以快速调用,快速部署模型。
序列标注的命名实体识别方法,特别是将CNN、RNN和BERT等深度模型与条件随机场CRF结合,已成为主流方法。基于CRF的序列标注模型在序列预测中引入了标签路径约束,通过自动学习数据集中的标签转移关系和约束条件,帮助模型选择合理有效的实体标签序列。在实验分析部分,研究了BERT、BERT-Bi-LSTM、BERT-CRF、BERT-...
BERT-BILSTM-CRF模型首先使用BERT进行词向量的预训练,然后通过BiLSTM进行特征提取,最后利用CRF层进行序列标注。这种模型能够自适应学习,无需大量特征工程,且在实验结果上表现优秀。综上所述,这些模型在NER任务中各有特色,从传统的CRF模型到融合了深度学习技术的LSTM-CRF和BERT-BILSTM-CRF模型,它们的...
通过Bert+Bi-LSTM+CRF模型探索中文关键信息实体识别。 使用BERT预训练模型,获取每一个标识的向量表示特征 输入BiLSTM模型学习文本之间的关系 通过CRF层获取每个标识的分类结果 BERT+BiLSTM+CRF模型图 数据集 数据集用的是客服热线的内部话单数据,将客服人员接听的语音数据自动翻译为文本数据,然后从文本数据中提取具体的...
实践是与其理论对应上的,加CRF层的效果是优于Softmax的。但这里要提醒一下,模型训练时,要保持CRF的...
后来,Lample等在LSTM-CRF的基础上,提出双向长短期记忆网络(Bi-LSTM)和条件随机场(CRF)结合的模型,这种结构能够获取文本双向语义信息,在文本命名实体中任务中表现优异,在CoNLL-2003数据集中的1值达到90.94%[10]。 杨晓辉等提出一种基于分词任务和命名实体识别任务相结合的多任务双向长短期记忆网络模型,通过加入共享LSTM...