首先定义一个配置文件类,类里边存放Bert和LSTM的一些超参数 classConfig(object):'''配置参数'''def__init__(self,dataset):self.model_name='Bert RNN Model'# 训练集,测试集,检验集,类别,模型训练结果保存路径# self.train_path=dataset+'/data/dev.txt'# self.
BERT是一种基于transformer架构的双向模型,它以一种速度更快的基于Attention的方法取代了RNN(LSTM和GRU)的sequential属性。 该模型还在两个无监督任务(“遮蔽语言模型”和“下一句预测”)上进行了预训练。这让我们可以通过对下游特定任务(例如情绪分类,意图检测,问答等)进行微调来使用预先训练的BERT模型。 本文将手把手...
Bi-LSTM是一种双向长短时记忆网络,它结合了TextCNN和TextRNN的优点。Bi-LSTM使用两个独立的LSTM网络,一个从左到右处理文本,另一个从右到左处理文本。它可以捕获更全面的上下文信息,并且在处理长序列时更有效。 在这个流程图中,输入文本被转换为嵌入向量,然后经过一个双向LSTM层和一个最大池化层,最后通过一个全...
基于双向LSTM的语言模型训练标准的从左到右的语言模型,并且还训练从右到左(反向)语言模型,该模型预测来自ELMO中的后续单词的先前单词。在ELMo中,前向语言模型和后向语言模型都有一个LSTM。关键的区别在于,LSTM都不会同时考虑前一个和后一个令牌。 为什么BERT优于其他双向型号? 直观地说,深度双向模型比从左到右模...
【Pytorch】BERT+LSTM+多头自注意力(文本分类) 2018年Google提出了BERT[1](Bidirectional Encoder Representations from Transformers)预训练模型,刷新了11项NLP任务的精度,在NLP领域掀起一波预训练(pre-training)模型热潮。通过对BERT、RoBERTa、GPT等预训练模型微调(fine-tuning)或者作为文本的特征提取器进行迁移学习成为当...
对应单标签文本分类来说,例如二元的文本分类,我们首先用一层或多层LSTM提取文本序列特征,然后接一个dropout层防止过拟合,最后激活函数采用sigmoid,或者计算损失的时候使用sigmoid交叉熵损失函数。对于多元分类则激活函数采用softmax,其它没有差别 多标签文本分类
与RNN、LSTM、CNN等深度学习模型相比,BERT的发展速度要快得多。作为高层次的理解,BERT有两种不同的架构变体:BERT base和BERT large。第一个变型有12个Transformers 块,12个注意头,1.1亿参数,后一个变型有24个Transformers ,16个注意头,3.4亿参数。它在使用过程中完成了两个NLP的任务:遮蔽语言建模和下一句...
两层双向LSTM,用来建模序列中词的两个方向。最后两层全连接层,可以预测每个新闻类别的概率。现在来训练模型,不过在实际测试集上测试之前,我们要在训练集上划一小块验证集来验证模型性能。Nice!在某些epoch中准确率达到了0.89。为了对词嵌入模型进行评估,在测试集上也要进行预测,并用相同指标进行对比(评价指标...
编码后,作为你自己设计的某种模型(例如 LSTM、SVM 等都由你自己定)的输入,等于说将 Bert 作为一个句子特征编码器,这种方法没有反向传播过程发生,至于如果后续把定长句子向量输入到 LSTM 种继续反向传播训练,那就不关 Bert 的事了。这也是一种常见的语言模型用法,同类的类似 ELMo。
与RNN、LSTM、CNN等深度学习模型相比,BERT的发展速度要快得多。作为高层次的理解,BERT有两种不同的架构变体:BERT base和BERT large。第一个变型有12个Transformers 块,12个注意头,1.1亿参数,后一个变型有24个Transformers ,16个注意头,3.4亿参数。它在使用过程中完成了两个NLP的任务:遮蔽语言建模和下一句预测。