m阶指的是m路,一个超级节点最大可以分出多少路。二叉树分出两边,左边和右边,就是两路,二阶。 下面是几个定义为不同阶的B-树。 分支数 B-Tree的分支数有个上下限,例如6阶的B-Tree(m=6),又被称为 “(3,6)-树”,类似的还有 “(3,5)-树”,“(2,4)-树”,而(2,4)树就是我们后面要学的红黑...
B树(B-tree)是一种树状数据结构,是一种平衡的多路查找树,能够用来存储排序后的数据。这种数据结构能够让查找数据、循序存取、插入数据及删除的动作,都在对数时间内完成。B树,概括来说是一个一般化的二叉查找树,可以拥有多于2个子节点。与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作。B-tree算法...
B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。 B+Tree相对于B-Tree有几点不同: 非叶子节点只存储键值信息, 数据记录...
红黑树 红黑树(Red-Black Tree)是二叉搜索树(Binary Search Tree)的一种改进。我们知道二叉搜索树在最坏的情况下可能会变成一个链表(当所有节点按从小到大的顺序依次插入后)。而红黑树在每一次插入或删除节点之后都会花O(log N)的时间来对树的结构作修改,以保持树的平衡。也就是说,红黑树的查找方法与二叉搜索...
索引常用的数据结构有: 1、hash结构。 2、B+Tree结构。 3、思考🤔为什么是B+Tree? Tree的数据结构: 1、二叉查找树:(Binary Search Tree) 缺点:树的高度没有约束,导致查询效率时间复杂度较高O(n)。 二叉查找树 2、平衡二叉树(AVL树):(Balance Binary Search Tree) ...
1、B-tree索引是数据库中存取和查找文件(称为记录或键值)的一种方法。 2、硬盘中的结点也是B-tree结构的。与内存相比,硬盘必须花成倍的时间来存取一个数据元素,这是因为硬盘的机械部件读写数据的速度远远赶不上纯电子媒体的内存。与一个结点两个分支的二元树相比,B-tree利用多个分支(称为子树)的结点,减少获取记...
具体讲解之前,有一点,再次强调下:B-树,即为B树。因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解。如人们可能会以为B-树是一种树,而B树又是一种树。而事实上是,B-tree就是指的B树。特此说明。
其他数据结构如二叉搜索树、avl树、红黑树等只能在一个节点中存储一个键。如果你必须存储大量的键,那么这种树的高度就会变得非常大,访问时间也会增加。 但是,B-tree 可以在单个节点中存储许多键,并且可以有多个子节点。这显着降低了高度,允许更快的磁盘访问。
数据结构 —— B树和B+树 1. 背景 最近在学习数据库相关的知识,了解到数据库很多是采用B-/+树作为索引,例如Mysql的InnoDB引擎使用的B+树、MongoDB默认采用B树作为索引。 在计算机科学中,B树(英语:B-tree)是一种自平衡的树,能够保持数据有序。这种数据结构能够让查找数据、顺序访问、插入数据及删除的动作...
B-Tree树即B(Balanced:平衡)树,有人将B-Tree 翻译成 B-树,容易让人产生误解,会以为 B-树是一种树。实际上,B-Tree就是B树。 三、B树、B+树、B*树 【1】B树介绍:前面介绍的2-3、2-3-4树就是 B树,在 MySql 中经常听说某种索引是基于 B树、B+树的,如下图: ...