Actor-Critic 算法和之前 经典的 policy gradient 的算法相比多了两个步骤就是 第2行和第3行,其余部分 几乎和 policy gradient 方法是一样的。 首先因为在这里我们使用的是 advantage 来更新 policy,所以我们就必须计算出 advantage,而计算 advantage 前面我们已经推导过了 就是用 value function 来近似计算 advantag...
并行Online-Actor-Critic算法 上面说到online版本的Actor-Critic算法由于每次训练时只有一个样本,因此会导致方差很大。但Online版本的算法又格外优雅,为了更好的使用Online版本算法,我们通常会使用同步并行机制或异步并行机制,增加每次更新的batch size,从而实现Online版本的Actor-Critic算法。 下面首先给出基本的Online Actor...
根据策略梯度算法推导,算法第 9 步用到了 qtqt,它是裁判给动作打的分数,书和论文通常拿 δtδt 来替代 qtqt。qtqt 是标准算法,δtδt 是Policy Gradient With Baseline(效果更好),都是对的,算出来期望也相等。 Baseline是什么?接近 qtqt 的数都可以作为 Baseline,但不能是 atat 的函数。 至于为什么basel...
1、算法思想 Actor-Critic算法分为两部分,我们分开来看actor的前身是policy gradient他可以轻松地在连续动作空间内选择合适的动作,value-based的Qlearning做这件事就会因为空间过大而爆炸,但是又因为Actor是基于回合更新的所以学习效率比较慢,这时候我们发现可以使用一个value-based的算法作为Critic就可以实现单步更新。这样...
这样就得到了 Actor-Critic Policy Gradient。把 Value Function 和 Policy Function 两者结合起来的一中算法。其包含两个成分: Actor:Actor 就是指的 Policy Function,是用来和环境交互,做出动作,可以理解为一个”表演者“。
Actor-critic类似于带有基准的称为REINFORCE的策略梯度算法。强化是MONTE-CARLO的学习,它表示总收益是从整个轨迹中采样的。但是在参与者评论家中,我们使用引导程序。因此,优势功能的主要变化。 策略梯度总回报中的原始优势函数更改为自举。资料来源:[3] 最后,b(st)更改为当前状态的值函数。可以表示如下: ...
强化学习代码实战-07 Actor-Critic 算法 Actor(策略网络)和 Critic(价值网络) Actor 要做的是与环境交互,并在 Critic 价值函数的指导下用策略梯度学习一个更好的策略。 Critic 要做的是通过Actor 与环境交互收集的数据学习一个价值函数,这个价值函数会用于判断在当前状态什么动作是好的,什么动作不是好的,进而帮助...
在Actor-Critic算法 里面,最知名的方法就是 A3C(Asynchronous Advantage Actor-Critic)。 如果去掉 Asynchronous,只有 Advantage Actor-Critic,就叫做A2C。 如果加了 Asynchronous,变成Asynchronous Advantage Actor-Critic,就变成A3C。 2.1 Actor-Critic 2.1.1 Q-learning ...
第七章:_Actor-Critic算法分析(A3C)是【迪哥谈AI】大模型必备的强化学习教程来了!绝对是2023年讲的最好的强化学习零基础入门到精通完整版教程(含实战源码)的第36集视频,该合集共计46集,视频收藏或关注UP主,及时了解更多相关视频内容。
Actor-Critic模型的算法包括两个主要步骤:策略评估和策略改进。在策略评估步骤中,Critic根据当前状态和动作的价值来更新值函数。在策略改进步骤中,Actor根据Critic的评估结果来更新策略函数。这两个步骤交替进行,直到达到收敛条件。具体来说,策略评估步骤中,Critic使用值函数来评估当前状态的价值。值函数可以是状态值...