二、1*1卷积(one by one convolution)的作用 1*1卷积过滤器,它的大小是1*1,没有考虑在前一层局部信息之间的关系。最早出现在 Network In Network的论文中 ,使用1*1卷积是想加深加宽网络结构 ,在Inception网络( Going Deeper with Convolutions )中用来降维。 由于3*3卷积或者5*5卷积在几百个filter的卷积层...
可分离卷积(空间可分离卷积,深度卷积)扁平卷积(Flattened Convolution)分组卷积(Grouped Convolution)随...
最早出现在 Network In Network的论文中 ,使用1*1卷积是想加深加宽网络结构 ,在Inception网络( Going Deeper with Convolutions )中用来降维,如下图: 由于3*3卷积或者5*5卷积在几百个filter的卷积层上做卷积操作时相当耗时,所以1*1卷积在3*...
1x1卷积核的最大作用是降低输入特征图的通道数,就是降低计算量罢了,还有通过卷积后经过激活函数有些说...
In Convolutional Nets, there is no such thing as “fully-connected layers”. There are only convolution layers with 1x1 convolution kernels and a full connection table– Yann LeCun 参考:https://iamaaditya.github.io/2016/03/one-by-one...
1X1卷积核最开始是在颜水成论文[1312.4400] Network In Network中提出的,后来被[GoogLeNet 1409.4842] Going Deeper with Convolutions的Inception结构继续应用了。能够使用更小channel的前提就是sparse比较多 不然1*1效果也不会很明显 Network in Network and 1×1 convolutions ...
网络中的网络以及 1×1 卷积(Network in Network and 1×1 convolutions) 在架构内容设计方面,其中一个比较有帮助的想法是使用1×1卷积。 也许你会好奇,1×1的卷积能做什么呢?不就是乘以数字么?听上去挺好笑的,结果并非如此,我们来具体看看。 过滤器为1×1,这里是数字2,输入一张6×6×1的图片,然后对它...
Factorizing Convolutions with Large Filter Size,也就是分解大的卷积,用小的卷积核替换大的卷积核,因为大尺寸的卷积核可以带来更大的感受野,但也意味着更多的参数,比如5x5卷积核参数是3x3卷积核的25/9=2.78倍。因此可以用2个连续的3x3卷积层(stride=1)组成的小网络来代替单个的5x5卷积层,(保持感受野范围的同时...
K~是depthwise convolution 核, 大小为DK×DK×M,K~中的mth卷积核作用于F中的mthchannel,产生特征图G~中的第mth个channel。 计算量:DK×DK×M×DF×DF depthwise convolution只是过滤输入通道,并没有将他们组合产生新的特征。 因此,我们通过一个1*1的卷积来产生他们的线性组合。