一种方法是降低模型对有标签数据的依赖,这就是零样本学习(Zero-Shot Learning)背后的动机,通过这种学习方式,模型会学习如何对它以前从未见过的类别进行分类,从而达到让模型识别出它以前从未见过的东西的效果。 在动物分类的例子中,即使模型在训练过程中从来没有见过"熊猫 "的标签示例,它也能预测上图右下角的图像是...
[5]Zero-shot Learning : An Introduction:https://www.learnopencv.com/zero-shot-learning-an-introduction/
NLP中的零样本学习(Zero-Shot Learning, ZSL)是一种先进的机器学习方法,其核心在于使模型能够在没有见过任何标注样本的情况下,对新的类别或任务进行有效的分类或推理。 这种方法特别适用于自然语言处理领域,因为在NLP中,新类别、新主题或新词汇不断涌现,传统需要大量标注样本的监督学习方法往往难以应对。 基本概念 零...
大家好,今天我们要聊的是人工智能领域中的一个神奇概念——零样本学习(Zero-Shot Learning),这个听起来有点科幻的技术其实已经悄然改变了我们对机器智能的认知。想象一下,如果AI无需预先接触过某个类别样本就能准确识别它,是不是很不可思议?接下来,我们就以通俗易懂的方式,揭开零样本学习的神秘面纱。 一、什么是...
Zero-shot learning(零样本学习) 一、介绍 在传统的分类模型中,为了解决多分类问题(例如三个类别:猫、狗和猪),就需要提供大量的猫、狗和猪的图片用以模型训练,然后给定一张新的图片,就能判定属于猫、狗或猪的其中哪一类。但是对于之前训练图片未出现的类别(例如牛),这个模型便无法将牛识别出来,而ZSL就是为了...
一、zero-shot learning(零样本学习) 1)定义 zero-shot learning顾名思义即是对某(些)类别完全不提供训练样本,也就是说没有标注样本的迁移任务被称为零次学习。zero-shot learning是为了能够识别在测试中出现,但是在训练中没有遇到过的数据类别,可以说是迁移学习。
来自南京理工大学和牛津大学的研究者提出了一个即插即用的分类器模块,只需修改一行代码就能大幅提升生成型零样本学习方法的效果,减少了分类器对于生成伪样本质量的依赖。 零样本学习(Zero-Shot Learning)聚焦于对训练过程中没有出现过的类别进行分类,基于语义描述的零样本学习通过预先定义的每个类别的高阶语义信息来实现...
少量样本学习(Few-Shot Learning)和零样本学习(Zero-Shot Learning)是近些年来在机器学习领域中备受关注的研究方向。这些方法的出现为解决某些特定问题提供了全新的视角,尤其是在数据稀缺的场景下。这两种学习方法的核心思想是,在不需要大量标注数据的情况下,依然能够训练出高效且表现优异的模型。这种能力在实际应用中具有...
谷歌新推出了弱监督看图说话模型SimVLM,能够轻松实现零样本学习(zero-shot)任务迁移。从文字描述图像到回答图片相关问题,模型无需微调也能样样精通。对于一般的视觉语言预训练(VLP)模型,训练数据集中要求包含大量精准标签。而模型的任务迁移,则需要针对特定任务重新进行数据集的标签标注。总结下来,就是标注数据集...