非绝热分子动力学(NAMD)本来是4中所有理论框架的统称,但是由于一些历史原因,现在的NAMD主要对应经典路径近似下的非绝热分子动力学,此处开始后文的NAMD都是这个意思。该方法的主要应用场景是凝聚态中的载流子动力学问题、光催化过程中的界面超快电子转移问题以及光致退磁问题。它可以包含声子对电子的影响,这是因为非
超快动力学涉及到绝热近似失效的情况,不同势能面之间会出现非绝热的跃迁过程。两个势能面之间的非绝热耦合的强度正比于原子核的运动速度的大小,反比于发生跃迁的势能面对应的电子态的能量之差。在经典-量子框架下,通常使用每个构型下的绝热波函数作为基组来展开当前构型下含时演化的波函数(实际上也能使用透热态...
相比于常规的DFT计算,超快动力学计算更具复杂性,在不理解自己使用的软件的理论框架的情况下,使用者甚至可能不知道如何设置参数,这一点和常规DFT计算有很大差别。在此,笔者整理了一些基本概念和理论方法分类,争取以一种简洁明晰的方式进行解释,帮助初学者快速上路。 1.常用概念解释 绝热近似 Born-Oppenheimer近似又称为...
超快动力学研究,揭示飞秒瞬态吸收光谱的应用与原理 飞秒瞬态吸收光谱(Femtosecond Transient Absorption Spectroscopy)是一种非常强大的光谱测试技术,用于研究材料和化学反应中的超快动力学过程。它结合了飞秒激光技术和吸收光谱技术,能够提供关于材料的能级结构、电荷转移、能量转移以及分子间相互作用等方面的信息。飞秒瞬...
氢分子光电离中纠缠电子的发射控制代表了量子物理学领域的重大进展。通过使用阿秒激光脉冲来操纵电离事件的定时和同步,研究人员可以精确控制光电子的发射方向。这项研究不仅增强了我们对量子纠缠和超快动力学的理解,还为量子技术和阿秒物理学的未来发展铺平了道路。随着我们继续探索量子系统的复杂性,控制和操纵纠缠电子...
需要超快动力学计算 1 超快激光与物质的相互作用 光与物质的相互作用涉及多个时间尺度也涉及多种自由度。其中电子-电子相互作用从产生到结束的时间在102fs这个数量级以内。飞秒激光等超快激光与物质的相互作用往往可以带来一些特殊的物理过程。例如,飞秒激光可能可以激发相干声子并引起超快的光致相变,这类相变与传统的...
在上期内容中(点击链接跳转🔗),我们介绍了超快动力学的一些基本概念和理论方法的分类。由于本系列主要是针对凝聚态材料计算,考虑到计算速度和准确度的平衡,大部分讨论都是围绕着经典-量子混合(MQC)的理论框架展开:电子部分的计算是基于含时Kohn-Sham(TDKS),原子核的运动轨迹则遵循经典的动力学方程。我们将在本期...
进展|高压超快动力学:压力诱导的声子瓶颈效应 超快光谱学和高压物理学均为凝聚态物理的前沿领域之一。超快光谱方法因其特有的极高时间分辨率、Fermi面以上电子激发态探测、全波长宽谱能量范围的相互作用、相干态和集体激发态的产生和探测、表面界面对称破缺的探测等优势在凝聚态物理特别是关联量子材料的研究中有重要的...
PWmat也能实现经典路径近似下的载流子动力学演化。注意到实际操作中非绝热耦合项可以直接由当前时刻和下一个时刻的波函数内积除以时间步长得到,PWmat在做BOMD产生原子核轨迹的过程中,直接输出了两个时刻间波函数的内积,这样就避免了再对轨迹上的构型做自洽计算求解波函数的过程,既节约了计算时间又节约了存储空间。在处理...