假设N是一个赌徒停止赌博的时刻。停时是说,赌徒在n次赌博之后,亦即知道了前n次赌博的所有信息 后,知道是否不赌了 。这就是停时名字的来源。比如说,赌徒决定连赢三把就不赌了,停止条件能够由当前信息决定,所以是个停时。如果赌徒决定,如果下一把会输,就不赌了...
针对赌徒破产问题有许多种不同的求解方法,这里我们将介绍其中一种使用鞅(Martingale)的方法。对于题干所述的随机过程 ,很明显由于限定 , 自身并不是一个鞅。对于此类非对称随机游走过程而言,我们发现 是一个期望为 的鞅,具体证明过程如下: 同样可知 ,即 为一个期望为 的鞅。根据可选停时定理(Optional Stopping ...
可以看出“手里的钱首次超过赌本”这个策略的用时期望是无穷,所以上述定理失效。 对于现实中的赌博,假设是个公平赌博(鞅)。由于赌徒和庄家赌本有限, 有界成立。由于每次赌博的下注有最小单位(一个筹码),容易验证某一方破产的用时期望小于无穷。作为一个赌博策略,破产了就没法再赌了,所以停止条件肯定包含了破产,于是...