第二步:了解NLP基础 2.1 学习NLP基础概念 在了解NLP的基本概念和原理后,你会对这个领域有一个总体的认识。 •Coursera: 自然语言处理导论:密歇根大学的入门课程,覆盖了NLP的基础知识和应用。 •Dan Jurafsky 和 Chris Manning 的视频系列:两位NLP专家的系列视频,深入浅出地讲解NLP的各种概念和技术。 第三步:实...
「Flan-T5」是Google最新的一篇工作,通过在超大规模的任务上进行微调,让语言模型具备了极强的泛化性能,做到单个模型就可以在1800多个NLP任务上都能有很好的表现。这意味着模型一旦训练完毕,可以直接在几乎全部的NLP任务上直接使用,实现「One model for ALL tasks」,这就非常有诱惑力! 这里的Flan指的是(Instruction f...
【新智元导读】近日,谷歌AI团队新发布的BERT模型,在NLP业内引起巨大反响,认为是NLP领域里程碑式的进步。BERT的创新点在哪里?新智元专栏作者潘晟锋对这篇论文进行了深度解读。最近谷歌研究人员通过新的BERT模型在11项NLP任务中夺得STOA结果,这在自然语言处理学界以及工业界都引起了不小的热议。作者通过在33亿文本的...
近日,来自 CMU、谷歌研究院和 DeepMind 的科学家们提出了覆盖四十种语言的大规模多语言多任务基准 XTREME,希望一举解决这个问题。 自然语言处理(NLP)所面临的其中一个关键性挑战是,构建的系统不仅要在英文中 work,而且要在世界范围内约 6900 种语言中也 work。幸运的是,虽然大多数语言呈现数据稀疏(data spars...
在最新的博客文章中,谷歌公布了一个新的 NLP 模型,在文本分类任务上可以达到BERT级别的性能,但参数量仅为 BERT 的 1/300。 选自Google AI Blog,作者:Prabhu Kaliamoorthi,机器之心编译,机器之心编辑部。 在过去的十年中,深度神经网络从根本上变革了自然语言处理(NLP)领域的发展,但移动端有限的内存和处理能力对...
BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统,刷新了 11 项 NLP 任务的当前最优性能记录。近日,谷歌 AI 的一篇NLP论文引起了社区极大的关注与讨论,被认为是 NLP 领域的极大突破。如谷歌大脑研究科学家 Thang Luong Twitter 表示这是...
谷歌BERT横扫11项NLP任务记录 本文介绍了一种新的语言表征模型 BERT——来自 Transformer 的双向编码器表征。与最近的语言表征模型不同,BERT 旨在基于所有层的左、右语境来预训练深度双向表征。BERT 是首个在大批句子层面和 token 层面任务中取得当前最优性能的基于微调的表征模型,其性能超越许多使用任务特定架构的系统...
本文中,来自谷歌的研究者提出了一种统一各种预训练范式的预训练策略,这种策略不受模型架构以及下游任务类型影响,在 50 项 NLP 任务中实现了 SOTA 结果。 当前,NLP 研究人员和从业者有大量的预训练模型可以选择。在回答应该使用什么模型...
cd ~/litpython -m lit_nlp.examples.quickstart_sst_demo --port=5432 情绪分类示例是基于斯坦福情感树库微调 BERT-tiny 模型,在 GPU 上不到 5 分钟即可完成。训练完成后,它将在开发集上启动 LIT 服务器。 2. 语言建模类示例 要想探索预训练模型(BERT 或 GPT-2)的预测结果,运行以下代码: cd ~/...
这篇论文提出一种新的NLP模型预训练方法XLNet,在20项任务上(如SQuAD、GLUE、RACE) 的性能大幅超越了此前NLP黄金标杆BERT。 XLNet:克服BERT固有局限,20项任务性能强于BERT 本文提出的XLNet是一种广义自回归预训练方法,具有两大特点:(1)通过最大化分解阶的所有排列的预期可能性来学习双向语境,(2)由于其自回归的性...