根据题意,f(x,y) = xy 在三个区域中的取值不同:当 xy < 0 时,f(x,y) < 0;当 xy = 0 时,f(x,y) = 0;当 xy > 0 时,f(x,y) > 0。根据上述结论,我们可以判断以下命题是否成立:对于任意 x, y,都有 f(x,y) >= 0当 xy > 0 时,f(x,y) > 0,因此该命题...
所以fx(x)在负无穷到正无穷的积分可分解成在负无穷到c,c到正无穷.而fx(x)在负无穷到c上的积分等于1,在c到正无穷上的积分等于0,所以fx(x)在负无穷到正无穷上的积分等于1. fx(x)=∫ f(x,y)dy ,积分范围由联合分布函数确定有效积分范围,即当x=x,确定y 的范围比如:f(x,y)=xy 0<x<1,0<y<x或 ...
百度试题 结果1 题目设f(x,y)=xy x 相关知识点: 试题来源: 解析 所以f(y,x)=yxy 反馈 收藏
设f(x+y,xy)=x²+y²,则f(x,y)=(?).相关知识点: 试题来源: 解析 设x+y=a,xy=b, 则f(a,b)=x^2+b^2=(x+y)^2-2xy=a^2-2b 所以f(x,y)=x^2-2y 分析总结。 扫码下载作业帮搜索答疑一搜即得答案解析查看更多优质解析举报设x反馈...
f(x+y,x-y)=(x+y)(x-y)=x^2-y^2 把x+y与x-y看成一个整体就行了 如有疑问,请追问;如已解决,请采纳 X
简单计算一下即可,答案如图所示 f
解答一 举报 f(x+y,xy)=x²+y²+xy=x²+y²+2xy-xy=(x+y)²-xyf(x,y)=x²-ydf(x,y)/dx=2xdf(x,y)=2xdxdf(x,y)/dy=-1df(x,y)=-dy所以df(x,y)==2xdx-dy 解析看不懂?免费查看同类题视频解析查看解答 更多答案(2) ...
设fxy在r2分别对xy连续当固定x时fxy对y是单调的则fxy是连续的结果一 题目 二元函数的连续性问题.设f(x,y)在R^2分别对x,y连续,当固定x时,f(x,y)对y是单调的,则f(x,y)是连续的. 答案 ☆例6.1.22若f(x,y)分别是单变量x及y的连续函数,-|||-又对其中一个变量是单调的,则f(x,y)是二元...
设u=f(x,xy,xyz),f具有连续的二阶偏导数.求u先对z求导,然后再对y求导.是不是把z和y当作自变量.把u和x当作z和y的函数. 答案 答:不是“把z和y当作自变量,把u和x当作z和y的函数”这里u是因变量,x、y和z是自变量,它们3个彼此独立---就是求导时=0,可看下面的过程函数u有3个中间变量s、t、w,...
简单计算一下即可,答案如图所示设u=xy,v=y/x,则z=f(u,v),所以ðz/ðx=f'1*ðu/ðx+f'2*ðv/ðx=yf'1-yf'2/x^2,注意到f'1,f'2还是关于u,v的复合函数,所以ð^2z/ðxðy=f'1+y(f''11*x+f''12/x)-f'2/x^2-y(...