检测框架为经典的滑动窗口法,即在位置空间和尺度空间遍历搜索检测。 原始图像打完补丁后就直接用固定的窗口在图像中移动,计算检测窗口下的梯度,形成描述子向量,然后就直接SVM了 二、opencv实现的code 代码语言:javascript 代码运行次数:0 复制 Cloud Studio代码运行 #include<opencv2/core/core.hpp>#include<opencv2/h...
(1)初始化HOG描述符hog = cv2.HOGDescriptor() (2)将SVM设置为预训练的行人检测器,通过cv2.HOGDescriptor_getDefaultPeopleDetector()函数加载 (3)使用detecMultiScale函数检测图像中的行人,返回值为行人对应的矩形框和权重值 (4)遍历检测到的矩形框,将其绘制在图像中 import cv2 # 导入 opencv import matplotlib...
HOG(Histogram of Oriented Gradient)特征在对象检测与模式匹配中是一种常见的特征提取算法,是基于本地像素块进行特征直方图提取的一种算法,对象局部的变形与光照影响有很好的稳定性,最初是用HOG特征来来识别人像,通过HOG特征提取+SVM训练,可以得到很好的效果,OpenCV已经有了。HOG特征提取的大致流程如下: 详细解读 第一...
opencv附带一个预训练的 HOG + 线性 SVM 模型,可用于在图像和视频流中执行行人检测 首先,使用cv2.HOGDescriptor()实例化HOG特征描述符类;然后再用cv2.HOGDescriptor_getDefaultPeopleDetector()静态函数获取行人检测训练的分类器的系数x;再之后将系数x传入cv2.HOGDescriptor.setSVMDetector()函数,用于激活默认的SVM分类...
使用HOG(Histogram of Oriented Gradients)描述符和SVM(Support Vector Machine)进行行人检测是一种常见的计算机视觉任务。下面是一个使用Python和OpenCV库实现行人检测的示例代码: 代码语言:javascript 复制 importcv2 # 加载HOG描述符和预训练的SVM模型 hog=cv2.HOGDescriptor()hog.setSVMDetector(cv2.HOGDescr...
OpenCV实战【2】HOG+SVM实现行人检测 HOG是什么? 方向梯度直方图( Histogram of Oriented Gradient, HOG )特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过 计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中。
在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测。而这两位也通过大量的测试发现,Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法。后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架。因此,Hog...
百度文库 期刊文献 会议hog加svm行人检测原理HOG特征结合SVM行人检测原理是通过提取图像的局部特征,使用支持向量机分类器进行训练和分类,以实现对行人目标的检测和识别。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
使用OpenCv进行行人检测的主要思想: HOG + SVM HOG: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征. SVM: (Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在...
一种基于HOG+SVM的行人检测算法 在先进驾驶辅助系统中, 基于视觉的行人检测只能对摄像头视野范围内的无遮挡行人进行检测, 并且易受天气的影响, 在极端天气下无法工作。针对视觉检测的缺陷, 提出了一种利用超宽带(Ultra Wideband,UWB)通信模块检测行人位置信息的方法, 并对其进行卡尔曼滤波以减小误差, 同时将得到...