通过对注意力机制的学习我们知道,在一般任务的Encoder-Decoder框架中,输入Source和输出Target内容是不一样的,比如对于英-中机器翻译来说,Source是英文句子,Target是对应的翻译出的中文句子,Attention机制发生在Target的元素Query和Source中的所有元素之间(即Attention机制与自身还有关注对象都有关系)。 而Self-Attention顾名...
在训练self attention的时候,实际上对于位置的信息是缺失的,没有前后的区别,上面讲的a1,a2,a3不代表输入的顺序,只是指输入的向量数量,不像rnn,对于输入有明显的前后顺序,比如在翻译任务里面,对于“机器学习”,机器学习依次输入。而self-attention的输入是同时输入,输出也是同时产生然后输出的。 如何在Self-Attention里...
Transformer的核心思想---自注意力机制 自注意力机制(Self-Attention)是Transformer模型的核心思想。它通过一种聪明的方式让神经网络在处理一个序列时(例如,一个句子中的单词),能够“注意”到序列中其他部分的相关信息,而不仅仅依赖于局部信息。相比传统的序列模型(如RNN、LSTM),自注意力机制能更好地捕捉远距离的依赖...
q=Self-Attention&spm=1001.2101.3001.7020作为注意力机制中的一种,也被称为intra Attention(内部Attention),是大名鼎鼎的Transformer重要组成部分。它允许模型在同一个序列内部进行权重分配,从而关注序列中的不同部分以提取特征。这种机制在处理单一序列时(如文本、图像等数据)非常有效,因为...
Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或者输出语句内部元素之间发生的Attention机制。 例如在Transformer中在计算权重参数时,将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。
概述 普通自注意力(Self-Attention)的工作原理主要是让模型能够关注输入序列中不同位置的信息,并根据这些信息来生成当前位置的输出。它是Transformer模型中的一个关键组件,尤其在处理序列数据(如文本、语音等)时表现出色。 以下是自注意力机制的优缺点分析: 优点:
2.自注意力机制(Self-Attention Mechanism) 基本思想:处理序列数据时,每个元素都可以与序列中其他元素建立关联,而不仅仅依赖相邻位置元素,通过计算元素间的相对重要性来自适应地捕捉元素间地长程依赖关系。 具体而言,对于序列中的每个元素,自注意力机制计算其与其他元素之间的相似度,并将这些相似度归一化为注意力权重...
Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或者输出语句内部元素之间发生的Attention机制。 例如在Transformer中在计算权重参数时,将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。
Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或者输出语句内部元素之间发生的Attention机制。 例如在Transformer中在计算权重参数时,将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。
自注意力机制(self-attention) B站视频-李宏毅机器学习2021-自注意力机制 1.要解决的问题 当把输入看成一个向量,输出是数值或者类别。但是如果遇到更复杂的问题呢? 假设输入是多个向量,而且数目不固定,要怎么处理呢? 总结-自注意力机制要解决的问题是:当神经网络的输入是多个大小不一样的向量,并且可能因为不同...