Y = pdist(a); % 计算两两样本之间的欧式距离 Z = linkage(Y); % 使用最短距离算法生成具有层次结构的聚类树 T = cluster(Z,3); % 将聚类树分成3类 cutoff = median([Z(end-2,3) Z(end-1,3)]); % 让其最小距离在倒数第二三行中,其取倒数第二行,即分成三类 H = dendrogram(Z,0,'ColorT...
156: nc=[x(bn,:);x(2*bn,:);x(3*bn,:);x(4*bn,:)];%初始聚类中心 157: %x(bn,:) 选择某一行数据作为聚类中心,其列值为全部 158: 159: %x数据源,k聚类数目,nc表示k个初始化聚类中心 160: %cid表示每个数据属于哪一类,nr表示每一类的个数,centers表示聚类中心 161: [cid,nr,centers] = ...
CLARANS算法(基于选择的算法)层次的方法BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)基于密度的方法DBSCAN算法(基于高密度连接区域)、DENCLUE算法(密度分布函数)、OPTICS算法(对象排序识别)基于网络的方法STING算法(统计信息网络)、CLIQUE算法(聚类高维空间)、WAVE-CLUSTER算法(小波变换)基...
划分聚类,包括K均值聚类和K中心聚类,同样需要系列步骤完成该过程,要求使用者对聚类原理和过程有较清晰的认识。 K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得所有类内对象与该类中心点之间的距离和最小。 Matlab自带函数:Y=kmeans(X, K)。 02 利用matlab实现聚类算法 问题描述: 参考表中16*13列的矩...
# 1. matlab中自带聚类算法概述 本文简要概述了matlab统计和机器学习工具箱中可用的聚类方法,并给出了其聚类函数。在使用过程中,直接调用该函数即可,十分方便,不得不感慨matlab的强大。 聚类分析,又称分割分析或分类分析,是一种常见的无监督学习方法。无监督学习用于从无标记的输入数据中进行推理,得到数据所属的分类...
matalab实现聚类算法 matlab自带聚类算法,matlab自带的系统聚类函数linkage功能比较复杂,定义了各种样本距离和类间距离,对于初学者而言不容易掌握方法的精髓。今天实现的简化版的系统聚类仅实现了欧几里得距离和汉明距离两种点距离,以及最小距离作为类与类之间距离,更
1.算法描述 聚类就是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,…
1.程序功能描述 K-means属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则。主要优点是算法简单、快速而且能有效地处理大数据集。研究和分析了聚类算法...
Matlab中K-means聚类算法的使用(K-均值聚类) K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小。 使用方法: Idx=Kmeans(X,K) [Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K)...
在Matlab中,聚类分析功能强大且易于使用,提供了多种聚类算法,如K-means、层次聚类等。本文将详细介绍Matlab中的聚类分析方法及其算法。 一、K-means算法 K-means算法是聚类分析中最经典且最常用的算法之一。它将数据样本划分成K个簇,并迭代地优化簇的中心,使得簇内的样本与簇中心的距离最小化。在Matlab中,使用k...