诸如FGSM [23]、 ILCM [35]、 DeepFool [72] 等方法只能生成单张图像的对抗扰动,而 Universal Adversarial Perturbations[16] 能生成对任何图像实现攻击的扰动,这些扰动同样对人类是几乎不可见的。该论文中使用的方法和 DeepFool 相似,都是用对抗扰动将图像推出分类边界,不过同一个扰动针对的是所有的图像。虽然文中...
诸如FGSM [23]、 ILCM [35]、 DeepFool [72] 等方法只能生成单张图像的对抗扰动,而 Universal Adversarial Perturbations[16] 能生成对任何图像实现攻击的扰动,这些扰动同样对人类是几乎不可见的。该论文中使用的方法和 DeepFool 相似,都是用对抗扰动将图像推出分类边界,不过同一个扰动针对的是所有的图像。虽然文中...
Su[68] 等人使用了差分进化算法,对每个像素进行迭代地修改生成子图像,并与母图像对比,根据选择标准保留攻击效果最好的子图像,实现对抗攻击。这种对抗攻击不需要知道网络参数或梯度的任何信息。 6 Carlini and Wagner Attacks (C&W) Carlini 和 Wagner[36] 提出了三种对抗攻击方法,通过限制 l_∞、l_2 和 l_0 ...
图 1:三种⽹络的对抗样本和原始样本的对⽐,以及错误分类结果。图 2:3D 打印的对抗样本。第 2 节⾥列举了机器视觉中关于对抗攻击的常⽤术语。第 3 节回顾了针对图⽚分类任务的对抗攻击。图 3:单像素攻击。第 4 节单独介绍了在实际⽣活场景中对抗攻击的⽅法。
Carlini 和 Wagner[36] 提出了三种对抗攻击方法,通过限制 l_∞、l_2 和 l_0 范数使得扰动无法被察觉。实验证明 defensive distillation 完全无法防御这三种攻击。该算法生成的对抗扰动可以从 unsecured 的网络迁移到 secured 的网络上,从而实现黑箱攻击。
Carlini 和 Wagner[36] 提出了三种对抗攻击方法,通过限制 l_∞、l_2 和 l_0 范数使得扰动无法被察觉。实验证明 defensive distillation 完全无法防御这三种攻击。该算法生成的对抗扰动可以从 unsecured 的网络迁移到 secured 的网络上,从而实现黑箱攻击。
Carlini 和 Wagner[36] 提出了三种对抗攻击方法,通过限制 l_∞、l_2 和 l_0 范数使得扰动无法被察觉。实验证明 defensive distillation 完全无法防御这三种攻击。该算法生成的对抗扰动可以从 unsecured 的网络迁移到 secured 的网络上,从而实现黑箱攻击。
Carlini 和 Wagner[36] 提出了三种对抗攻击方法,通过限制 l_∞、l_2 和 l_0 范数使得扰动无法被察觉。实验证明 defensive distillation 完全无法防御这三种攻击。该算法生成的对抗扰动可以从 unsecured 的网络迁移到 secured 的网络上,从而实现黑箱攻击。