在众多碳材料中,石墨烯因其优异的物理和化学性质而受到了极大的关注,并推动了许多新应用的发展,如超导魔角石墨烯,超高性能光电探测器和生物医学应用等。然而尽管石墨烯具有许多优异的性能,其进一步发展与应用仍存在一些局限性,如零带隙结构、制备成本高、制备大尺寸单晶困难等。2008年, Andre Geim等人利用电子束...
而对于零维材料,其DOS为量子化的,表明GQDs在三维方向均被限制,独特的量子约束和边缘效应使GQDs表现出非凡的光学、电学、热学和磁学性质。 图2 GQDs的不同性质示意图 在众多碳材料中,石墨烯因其优异的物理和化学性质而受到了极大的关注,并推动了许多新应用...
然而尽管石墨烯具有许多优异的性能,其进一步发展与应用仍存在一些局限性,如零带隙结构、制备成本高、制备大尺寸单晶困难等。2008年, Andre Geim等人利用电子束刻蚀技术以石墨烯为原料制备了GQDs。GQDs作为碳材料家族的最新成员,继承了石墨烯材料的高比表面积、高载流子迁移率、高惰性、高稳定性、无毒性和高光热转换效率...
与二维石墨烯相比,零维石墨烯量子点(GQDs)具有许多不同的特性,如强荧光、非零带隙和具备溶液加工特性等。GQDs还具有生物兼容性好和毒性低的优点,因而在生物医学领域有着广泛的应用。由于边缘修饰可有效调节纳米GQDs材料的性能,GQDs的边缘效应研究受到了学术界的广泛关注。目前,GQDs的制备方法主要分为三大类:自上而下...
与二维石墨烯相比,零维石墨烯量子点(GQDs)具有许多不同的特性,如强荧光、非零带隙和具备溶液加工特性等。GQDs还具有生物兼容性好和毒性低的优点,因而在生物医学领域有着广泛的应用。由于边缘修饰可有效调节纳米GQDs材料的性能,GQDs的边...