坡矩阵的积和式(英文) 来自掌桥科研 作者张国勇摘要 在坡上讨论研究矩阵积和式的三类问题:首先,证明当Per(A)=1时,矩阵A的行与列的元素是互补的,同时给出矩阵A可逆的条件;其次,讨论积和式Per(A)与Per(AB)及Per(A+B)间的不等关系,给出若干不等式;最后,研究给出矩阵...
I-1矩阵的积和式极值及非负整数矩阵的积和式新上界 5. Application of Ryser Theorem of Matrix Product and Sum Formula; 矩阵积和式的Ryser定理的应用 6. The Upper Bound for the Permanent of the Partly Decomposable Nonnegative Matrix; 一类部分可分非负矩阵积和式的上界 7. The Value for a kind...
积和式1. In this paper,by means of some algebraic and analytical skills,the author gives a new proof for Chebyshev type inequality involving permanents perA/∏from i=1 to n ∑from j=1 to n ai,j≤perB/∏from i=1 to n ∑from j=1 to n bi,j Moreover,the author also gives an ...
积和式 permanent 积和式【碑rn.团吧城;。epM翻eHT],一个(川xn)矩阵A一1 Ia,21!的 函数 二A一万a,。〔万,…a。·(,。,这里a.,是一个交换环中的元素,对一切由{l,…,。}到{1,…,n}内的一一映射。求和.如果m二。,则口表示一切可能的置换,这时积和式是对于H生S。的Sohur矩阵函数(schurff以tr...
矩阵积和式的Ryser定理的应用 3. The Upper Bound for the Permanent of the Partly Decomposable Nonnegative Matrix; 一类部分可分非负矩阵积和式的上界 4. Extremes of Permanents of I-1-Matrices and Upper Bound for Permanents of Non-negative Integral Matrices; I-1矩阵的积和式极值及非负整数矩阵...
文中利用矩阵直积和参数矩阵特征向量推导了机器人手眼转换矩阵的线性方程 ,通过最小二乘法得到线性闭解 ,采用Rodrigues公式对所求解的旋转部分进行正交化以消除测量噪声的影响 ,由计算试验证明正交化所引入的误差在绝大多数情况是允许的 ,所求线性解严格满足手眼方程。 2. The presented methods are based on kroneck...
不变积和式(permanent)在组合数学特别是图论中占有重要的位置,一直受到人们的关注。 The permanent of matrix plays an important role in Combinatorial Mathematics, especially in Graph Theo-...
积和式中的Laplace定理2) Cauchy's mean value theorem in integral form 积分形式的Cauchy中值定理3) Laplace theorem Laplace定理1. Equivalent Proof of Cauchy-Binet Theorem and Laplace Theorem; Cauchy-Binet定理与Laplace定理的等价证明2. Laplace theorem by graph theory is presented by Valiant s ...