当矩阵没有逆矩阵时,我们可以使用模逆矩阵来解决问题。 一、什么是模逆矩阵 模逆矩阵是指在模意义下的逆矩阵。在模意义下,矩阵的元素都是整数,而且对于一个模数m,矩阵中的每个元素都可以表示为一个模m的余数。模逆矩阵是指在模意义下,矩阵A的逆矩阵B也是一个整数矩阵,即AB≡BA≡I(mod m)。 二、1.判断...
3. 总结 模逆矩阵是一种用于求解矩阵逆的高效方法,它充分利用了矩阵在模运算下的特殊性质。通过求解行列式和反演矩阵,矩阵逆可以很快地求得,有效地解决了在行列不同的矩阵的求解过程中行列式求解难度大的问题。通过理解和掌握这种方法,可以更加高效地解决矩阵求逆问题。©...
最近在学习密码学相关内容,偶然看到了模逆矩阵的求法这一问题,一段时间后也算是有了自己的理解~~ 下面举个例子作为参考: 接下来算一下A*,以第一行第一列元素11为例,可算出伴随矩阵中该元素的值为:23*17-25*7=216 所以根据上述同理可得: 嘻嘻嘻今天就到这啦~~...
求逆矩阵模板 高斯消元可以做到O(n6)O(n6)吧。 有一种很巧妙的做法: 我们知道:A∗A−1=EA∗A−1=E,要求A−1A−1 设一个P=EP=E,那么一开始满足A∗P=AA∗P=A 假设我们对右边的AA做高斯消元,把它消成EE。 我们知道高斯消元每次的操作相当于右乘一个矩阵BB。 (A∗P)∗B=A∗...
存在可逆矩阵 ,使 本题解法:现在知道 ,求 使 同时我们有 ,那么我们有 ,于是我们对矩阵 做初等行变换,当 变为 时, 就变成了 ,无解情况用推论判断即可,复杂度 ,非常好写 #include<bits/stdc++.h> #definecsconst usingnamespacestd; intread(){ ...
则AP=EAP=E,则A−1AP=A−1EA−1AP=A−1E,则P=A−1P=A−1,也就是把初等变换矩阵乘起来(或者是说把它们乘上一个单位矩阵)得到的就是矩阵的逆矩阵 把AA消成单位矩阵就要先把A大力消成上三角矩阵,高斯消元就能做 #include<bits/stdc++.h>#definep 1000000007#defineint long longusingnamespac...
摘要:研究了模逆矩阵的存在条件和性质,给出求模逆矩阵的两种方法,通过例题说明求模逆矩阵与传统求逆矩阵的不同之处,最后给出了模逆矩阵在模算术密码系统中的应用和在求解素数模的多元未知数线性同余式组中的应用。 关键词: 代数 同余 模 求模逆矩阵 ...
,2020模逆矩阵的求法及其应用翁世有(苏州市职业大学 数理部,江苏 苏州 215104)摘 要: 研究了模逆矩阵的存在条件和性质,给出求模逆矩阵的两种方法,通过例题说明求模逆矩阵与传统求逆矩阵的不同之处,最后给出了模逆矩阵在模算术密码系统中的应用和在求解素数模的多元未知数线性同余式组中的...
求一个\(N\times N\)的矩阵的逆矩阵。答案对\(10^9+7\)取模。 在原矩阵右边接一个单位矩阵,然后把原矩阵通过初等变换消成单位矩阵,右边的单位矩阵做同样的变换,就成了逆矩阵。 什么,为什么? 难得你不觉得这个想起来非常的正确么 Code: // luogu-judger-enable-o2 ...