写在前面 这篇文章将从3个角度:加权、模版匹配与几何来理解最后一层全连接+Softmax。掌握了这3种视角,可以更好地理解深度学习中的正则项、参数可视化以及一些损失函数背后的设计思想。 全连接层与Softmax回顾 深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 加权角度 ...
深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 先看一下计算方式:全连接层将权重矩阵与输入向量相乘再加上偏置,将nn个(−∞,+∞)(−∞,+∞)的实数映射为KK个(−∞,+∞)(−∞,+∞)的实数(分数);Softmax将KK个(−∞,+∞)(−∞,+∞)的实数映...
深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 先看一下计算方式:全连接层将权重矩阵与输入向量相乘再加上偏置,将nn个(−∞,+∞)(−∞,+∞)的实数映射为KK个(−∞,+∞)(−∞,+∞)的实数(分数);Softmax将KK个(−∞,+∞)(−∞,+∞)的实数映...
全连接层与Softmax回顾 深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 先看一下计算方式:全连接层将权重矩阵与输入向量相乘再加上偏置,将nn个(−∞,+∞)(−∞,+∞)的实数映射为KK个(−∞,+∞)(−∞,+∞)的实数(分数);Softmax将KK个(−∞,+∞)...
深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 先看一下计算方式:全连接层将权重矩阵与输入向量相乘再加上偏置,将nn个(−∞,+∞)(−∞,+∞)的实数映射为KK个(−∞,+∞)(−∞,+∞)的实数(分数);Softmax将KK个(−∞,+∞)(−∞,+∞)的实数映...
深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 先看一下计算方式:全连接层将权重矩阵与输入向量相乘再加上偏置,将nn个(−∞,+∞)(−∞,+∞)的实数映射为KK个(−∞,+∞)(−∞,+∞)的实数(分数);Softmax将KK个(−∞,+∞)(−∞,+∞)的实数映...
全连接层与Softmax回顾 深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchange。 先看一下计算方式:全连接层将权重矩阵与输入向量相乘再加上偏置,将nn个(−∞,+∞)(−∞,+∞)的实数映射为KK个(−∞,+∞)(−∞,+∞)的实数(分数);Softmax将KK个(−∞,+∞)...